Skip to main content

In Silico Studies on Colon Cancer

  • Chapter
  • First Online:
Current trends in Bioinformatics: An Insight

Abstract

The colon cancer (CC) is one of the most common malignancies, and more than one million people become the prey of colon cancer every year worldwide. The CC initiates, develops, and progresses in various ways. But all these ways cannot be understood fully to till date. So, any effort taken in the CC research is a step toward prevention and cure of this devastating disease. In the present scenario, there are various in silico approaches as well as computational strategies available for gene expression analysis for CC like SAGEmap, X Profiler, digital gene expression displayer (DGED), digital differential display (DDD), and Digital Extractor. The drug discovery and drug development are very cumbersome, intense, and interdisciplinary processes. There are various methods available for the in silico drug designing and development such as homology modeling, molecular docking, virtual high-throughput screening, quantitative structure-activity relationship, hologram quantitative structure-activity relationship (HQSAR), comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), pharmacophore mapping, microarray analysis, conformational analysis, and Monte Carlo simulation. With the help of in silico approaches, many novel drug targets for CC like cytochrome P450 2A7, Rab3A, SFRP1, TLR4, MLH1, MSH6, survivin, FGFR-4, and ras oncogene products (H-ras, K-ras, and N-ras) have been identified. Although these tools can act at good starting points in disease gene discovery, there is a need for experimental validation of in silico-derived differential expression and drug design results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anacleto C et al (2005) Colorectal cancer “methylator phenotype”: fact or artifact? Neoplasia 7(4):331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreyev et al (2001) Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer 85(5):692–696

    Google Scholar 

  • Aqeilan RI et al (2010) miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ 17(2):215–220

    Article  CAS  PubMed  Google Scholar 

  • Baker SJ et al (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    Article  CAS  PubMed  Google Scholar 

  • Berends MJW et al (2002) Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet 70(1):26–37

    Article  CAS  PubMed  Google Scholar 

  • Bingham SA et al (2003) Dietary fibre in food and protection against colorectal cancer in the European prospective investigation into cancer and nutrition (EPIC): an observational study. Lancet 361:1496–1501

    Article  PubMed  Google Scholar 

  • Bird RP (1987) Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett 37:147–151

    Article  CAS  PubMed  Google Scholar 

  • Blobe GC et al (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–135810

    Article  CAS  PubMed  Google Scholar 

  • Cahill DP et al (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392:300–303

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    Article  CAS  Google Scholar 

  • Chapelle A (2004) Genetic predisposition to colorectal cancer. Nat Rev Cancer 4:769–780

    Article  CAS  PubMed  Google Scholar 

  • Davies et al (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954

    Google Scholar 

  • Delattre O et al (1989) Multiple genetic alterations in distal and proximal colorectal cancer. Lancet 334(8659):353–356

    Article  Google Scholar 

  • Douillard JY et al (2010) Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 28:4697–4705

    Article  CAS  PubMed  Google Scholar 

  • Eppert K et al (1996) MADR2 maps to 18q21 and encodes a TGF beta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86:543–552

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767

    Article  CAS  Google Scholar 

  • Fleming NI et al (2013) SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res 73(2):725–735

    Article  CAS  PubMed  Google Scholar 

  • Fodde R et al (2001) APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1(1):55–67

    Article  CAS  PubMed  Google Scholar 

  • Forrester et al (1987) Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327:298–303

    Article  CAS  PubMed  Google Scholar 

  • Gervaz P et al (2001) Dukes B colorectal cancer: distinct genetic categories and clinical outcome based on proximal or distal tumor location. Dis Colon Rectum 44(3):364–372

    Article  CAS  PubMed  Google Scholar 

  • Giovannucci E, Martinez ME (1996) Tobacco, colorectal cancer, and adenomas: a review of the evidence. J Natl Cancer Inst 88:1717–1730

    Article  CAS  PubMed  Google Scholar 

  • Groner B, Weiss A (2014) Targeting Survivin in cancer: novel drug development approaches. BioDrugs 28(1):27–39

    Article  CAS  PubMed  Google Scholar 

  • Ho HK et al (2013) Developing FGFR4 inhibitors as potential anti-cancer agents via in silico design, supported by in vitro and cell-based testing. Curr Med Chem 20(10):1203–1217

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz H et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  CAS  PubMed  Google Scholar 

  • Ilyas M et al (1997) β-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci U S A 94:10330–10334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jallepalli PV, Lengauer C (2001) Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 1:109–117

    Article  CAS  PubMed  Google Scholar 

  • Jemal A et al (2002) Cancer statistics. CA Cancer J Clin 52:23–47

    Article  PubMed  Google Scholar 

  • Jongbum K, Sangsoo K (2014) In silico identification of SFRP1 as a Hypermethylated gene in colorectal cancers. Genomics Inform 12(4):171–180

    Article  Google Scholar 

  • Joy A et al (2014) MLH1 gene: an in silico analysis. J Comput Biol Bioinforma Res 5(1):1–5

    Article  Google Scholar 

  • Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H et al (2011) Characteristics of recurrence after curative resection for T1 colorectal cancer: Japanese multicenter study. J Gastroenterol 46(2):203–211

    Article  PubMed  Google Scholar 

  • Labianca R et al (2000) Colon cancer. Crit Rev Oncol Hematol 51:145–170

    Article  Google Scholar 

  • Lamlum H et al (1999) The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson’s ‘two-hit’ hypothesis. Nat Med 5:1071–1075

    Article  CAS  PubMed  Google Scholar 

  • Lammi L et al (2004) Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 74:1043–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li TT et al (2014) Toll-like receptor signaling in colorectal cancer: carcinogenesis to cancer therapy. World J Gastroenterol 20(47):17699–17708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodhi SS et al (2012) Statistical analysis of differential gene expression profile for colon cancer. Indian J Biotechnol 11:396–403

    CAS  Google Scholar 

  • Lodhi SS et al (2014) 3D structure generation, virtual screening and docking of human Ras-associated binding (Rab3A) protein involved in tumourigenesis. Mol Biol Rep 41(6):3951–3959

    Article  CAS  PubMed  Google Scholar 

  • Lodhi SS et al (2015) In silico structural, virtual screening and docking studies of human cytochrome P450 2A7 protein. Interdiscip Sci 7(2):129–135

    Article  CAS  PubMed  Google Scholar 

  • Markowitz S et al (1995) Inactivation of the type II TGF-ß receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    Article  CAS  PubMed  Google Scholar 

  • Miyakura Y et al (2001) Extensive methylation of hMLH1 promoter region predominates in proximal colon cancer with microsatellite instability. Gastroenterology 121(6):1300–1309

    Article  CAS  PubMed  Google Scholar 

  • Nagel R et al (2008) Regulation of the adeno- matous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795–5802

    Article  CAS  PubMed  Google Scholar 

  • Nucci MR et al (1997) Phenotypic and genotypic characteristics of aberrant crypt foci in human colorectal mucosa. Hum Pathol 28:1396–1407

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou A et al (1998) Azoxymethane-inducedcolon tumors and aberrant crypt foci in mice of different genetic susceptibility. Cancer Lett 14:29–34

    Article  Google Scholar 

  • Papanikolaou A et al (2000) Sequential and morphological analyses of aberrant crypt foci formation in mice of differingsusceptibility to azoxymethane-induced colon carcinogenesis. Carcinogenesis 21:1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Parsons DW et al (2005) Colorectal cancer: mutations in a signalling pathway. Nature 436:792

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan H et al (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934

    Article  CAS  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg DW, Liu Y (1995) Induction of aberrant crypts in murine colon with varyingsensitivity to colon carcinogenesis. Cancer Lett 92:209–214

    Article  CAS  PubMed  Google Scholar 

  • Samuels Y et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    Article  CAS  PubMed  Google Scholar 

  • Shima F et al (2013) In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc Natl Acad Sci U S A 110(20):8182–8187

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparks AB et al (1998) Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Res 58:1130–1134

    PubMed  CAS  Google Scholar 

  • Takayama T et al (2001) Analysis of K-ras, APC and β-catenin in aberrant crypt foci in patients with adenoma and cancer, and familial adenomatous polyposis. Gastroenterology 121:599–611

    Article  CAS  PubMed  Google Scholar 

  • Thibodeau SN et al (1993) Microsatellite instability in cancer of the proximal colon. Science 260(5109):816–819

    Article  CAS  PubMed  Google Scholar 

  • Tomatis L, Bartsch H (1990) The contribution of experimental studies to risk assessment of carcinogenic agents in humans. Exp Pathol 40:251–266

    Article  CAS  PubMed  Google Scholar 

  • Van Cutsem E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417

    Article  PubMed  Google Scholar 

  • WCRF and AICR Food (1997) In: AIoC Research (ed) Nutrition and prevention of cancer: a global perspective. WCRF and AICR. World Cancer Research Fund and American Institute for Cancer Research, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulshan Wadhwa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lodhi, S.S., Sinha, M., Jaiswal, Y.K., Wadhwa, G. (2018). In Silico Studies on Colon Cancer. In: Wadhwa, G., Shanmughavel, P., Singh, A., Bellare, J. (eds) Current trends in Bioinformatics: An Insight. Springer, Singapore. https://doi.org/10.1007/978-981-10-7483-7_8

Download citation

Publish with us

Policies and ethics