Skip to main content

Plant Growth-Promoting Rhizobacteria: Diversity and Applications

  • Chapter
  • First Online:

Abstract

The rhizosphere is the region around plant roots where maximum microbial activities occur. In the rhizosphere both beneficial and harmful activities of microorganisms affect plant growth and development. The mutualistic rhizospheric bacteria which improve the plant growth and health are known as plant growth-promoting rhizobacteria (PGPR). They are of much importance due to their ability to help the plant in diverse manners. PGPR such as Pseudomonas, Bacillus, Azospirillum, Azotobacter, Arthrobacter, Achromobacter, Micrococcus, Enterobacter, Rhizobium, Agrobacterium, Pantoea, and Serratia are now very well known. Application of PGPR as bioinoculants/bioformulations is found to be very effective in enhancing crop productivity in a sustainable way. The use of PGPR in agriculture is also ecologically important as the synthetic chemicals used in agriculture are a severe threat to agroecosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Alla, M. H., Elenany, A. E., Ramadan, T., Zohri, E. M., & Nafady, I. M. (2017). Nodulation and nitrogen fixation of some wild legumes from differing habitats in Egypt. European Journal of Biological Research, 7(1), 9–21.

    CAS  Google Scholar 

  • Abdel Ghany, T. M., Alawlaqi, M. M., & Al Abboud, M. A. (2013). Role of biofertilizers in agriculture: A brief review. Mycopathology, 11(2), 95–101.

    Google Scholar 

  • Abeles, F. B., Morgan, P. W., & Saltveit, M. E. J. (1992). Ethylene in plant biology (pp. 26–55). San Diego: Academic.

    Book  Google Scholar 

  • Abou-Shanab, R. A. I., Angle, J. S., & Chaney, R. L. (2006). Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology and Biochemistry, 38, 2882–2889.

    Article  CAS  Google Scholar 

  • Adesemoye, A. O., Obini, M., & Ugoji, E. O. (2008). Comparison of plant growth promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables. Brazilian Journal of Microbiology, 39, 423–442.

    Article  CAS  Google Scholar 

  • Aeron, A., Pandey, P., Kumar, S., & Maheshwari, D. K. (2011). Emerging role of plant growth promoting rhizobacteria. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Crop ecosystem (pp. 1–26). Berlin/Heidelberg: Springer.

    Google Scholar 

  • AgriInfo.in. (2015). Role of biofertilizers in soil fertility and agriculture. http://agriinfo.in/?page=topic&superid=5&topicid=176

  • Ahemad, M., & Khan, M. S. (2012). Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain. Acta Physiologiae Plantarum, 34, 245–254.

    Article  CAS  Google Scholar 

  • Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University, 26(1), 1–20.

    Article  Google Scholar 

  • Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163, 173–181.

    Article  CAS  Google Scholar 

  • Ahmad, M., Zahir, Z. A., Khalid, M., Nazli, F., & Arshad, M. (2013). Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of Mung bean under salt-affected conditions on farmer’s fields. Plant Physiology and Biochemistry, 63, 170–176.

    Article  CAS  Google Scholar 

  • Ali, S. S., & Vidhale, N. N. (2013). Bacterial siderophore and their application: A review. International Journal of Current Microbiology and Applied Sciences, 2, 303–312.

    Google Scholar 

  • Ali, S. Z., Sandhya, V., Grover, M., Linga, V. R., & Bandi, V. (2011). Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. Journal of Plant Interactions, 6(4), 239–246.

    Article  CAS  Google Scholar 

  • Amora-Lazcano, E., Guerrero-Zúñiga, L. A., Rodriguez-Tovar, A., Rodriguez-Dorantes, A., & Vasquez-Murrieta, M. S. (2010). Rhizospheric plant-microbe interactions that enhance the remediation of contaminated soils. In A. Méndez-Vilas (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (pp. 251–256). Badajoz: FORMATEX.

    Google Scholar 

  • Anandham, R., Janahiraman, V., Gandhi, P. I., Kwon, S. W., Chung, K. Y., Han, G. H., Choi, J. H., & Sa, T. M. (2014). Early plant growth promotion of maize by various sulfur oxidizing bacteria that uses different thiosulfate oxidation pathway. African Journal of Microbiology Research, 8(1), 19–27.

    Article  CAS  Google Scholar 

  • Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today’s earth system models. Endeavour, 40, 178–187.

    Article  Google Scholar 

  • Antoun, H., & Kloepper, J. W. (2001). Plant growth promoting rhizobacteria. In S. Brenner & J. F. Miller (Eds.), Encyclopedia of genetics (pp. 1477–1480). New York: Academic.

    Chapter  Google Scholar 

  • Arora, N. K. (Ed.). (2013). Plant microbe symbiosis: Fundamental and advances (Vol. 459). New Delhi: Springer.

    Google Scholar 

  • Arora, N. K. (Ed.). (2015). Plant microbe symbiosis: Applied facets (p. 381). New Delhi: Springer.

    Google Scholar 

  • Arora, N. K., & Mishra, J. (2016). Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Applied Soil Ecology, 107, 405–407.

    Article  Google Scholar 

  • Arora, N. K., & Verma, M. (2017). Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech, 7, 381.

    Article  Google Scholar 

  • Arora, N. K., Kang, S. C., & Maheshwari, D. K. (2001). Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81, 673–677.

    Google Scholar 

  • Arora, N. K., Kim, M. J., Kang, S. C., & Maheshwari, D. K. (2007). Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Canadian Journal of Microbiology, 53, 207–212.

    Article  CAS  Google Scholar 

  • Arora, N. K., Khare, E., Verma, A., & Sahu, R. K. (2008). In vivo control of Macrophomina phaseolina by a chitinase and β-1,3-glucanase-producing pseudomonad NDN1. Symbiosis, 46, 129–135.

    CAS  Google Scholar 

  • Arora, N. K., Tewari, S., Singh, S., & Lal, N. (2012). PGPR for protection of plant health under saline conditions. In D. K. Maheshwari (Ed.), Bacteria in agrobiology (pp. 239–258). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Arora, N. K., Tewari, S., & Singh, R. (2013). Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In N. K. Arora (Ed.), Plant microbe symbiosis: Fundamentals and advances (pp. 411–449). New Delhi: Springer.

    Chapter  Google Scholar 

  • Arora, N. K., Mehnaz, S., & Balestrini, R. (Eds.). (2016a). Bioformulations: For sustainable agriculture (p. 299). Lucknow: Springer.

    Google Scholar 

  • Arora, N. K., Verma, M., Prakash, J., & Mishra, J. (2016b). Regulation of biopesticides: Global concerns and policies. In N. K. Arora, S. Mehnaz, & R. Balestrini (Eds.), Bioformulations: For sustainable agriculture (pp. 283–299). New Delhi: Springer.

    Google Scholar 

  • Arora, N. K., Verma, M., & Mishra, J. (2017). Rhizobial bioformulation: Past, present and future. In S. Mehnaz (Ed.), Rhizotrophs: Plant growth promotion to bioremediation (pp. 69–99). Singapore: Springer.

    Chapter  Google Scholar 

  • Arzanesh, M. H., Alikhani, H. A., Khavazi, K., Rahimian, H. A., & Miransari, M. (2011). Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 27, 197–205.

    Article  CAS  Google Scholar 

  • Asaf, S., Khan, M. A., Khan, A. L., Waqas, M., Shahzad, R., Kim, A. Y., Kang, S. M., & Lee, I. J. (2017). Bacterial endophytes from arid land plants regulate endogenous hormone content and promote growth in crop plants: An example of Sphingomonas sp. and Serratia marcescens. Journal of Plant Interactions, 12, 31–38.

    Article  CAS  Google Scholar 

  • Asari, S. Y. (2015). Studies on plant-microbe interaction to improve stress tolerance in plants for sustainable agriculture. Diss. (sammanfattning/summary) Uppsala: Sveriges lantbruksuniv, Acta Universitatis agriculturae Sueciae, 76, 1652–6880.

    Google Scholar 

  • Asghar, H. N., Zahir, Z. A., Arshad, M., & Khaliq, A. (2004). Relationship between in-vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils, 35, 231–237.

    Google Scholar 

  • Awad, N. M., Abd El-Kader, M. A., Alva, A. K., & Narale, S. H. (2011). Effects of nitrogen fertilization and soil inoculation of sulfur oxidizing or nitrogen-fixing bacteria on onion plant growth and yield. International Journal of Agronomy, 2011, 1–6.

    Article  CAS  Google Scholar 

  • Aznar, A., & Dellagi, A. (2015). New insights into the role of siderophores as triggers of plant immunity: What can we learn from animals? Journal of Experimental Botany, 66(11), 3001–3010.

    Article  CAS  Google Scholar 

  • Bagyalakshmi, T. A., Ramesh, V., Arivudainambi, U. S. E., & Rajendran, A. (2012). A novel endophytic fungus Pestalotiopsis sp. inhibiting Pinus canariensis with antibacterial and antifungal potential. International Journal of Advanced Life Sciences, 1, 1–7.

    Article  Google Scholar 

  • Bahadur, I., Maurya, B. R., Kumar, A., Meena, V. S., & Raghuwanshi, R. (2016). Towards the soil sustainability and potassium-solubilizing microorganisms. In V. S. Meena, B. R. Maurya, J. P. Verma, & R. S. Meena (Eds.), Potassium solubilizing microorganisms for sustainable agriculture (pp. 255–266). New Delhi: Springer.

    Chapter  Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    Article  CAS  Google Scholar 

  • Bakker, P. A. H. M., Doornbos, R. F., Zamioudis, C., Berendsen, R. L., & Pieterse, C. M. J. (2013). Induced systemic resistance and the rhizosphere microbiome. Plant Pathology Journal, 29, 136–143.

    Article  Google Scholar 

  • Bakshi, A., Shemansky, J. M., Chang, C., & Binder, B. M. (2015). History of research on the plant hormone ethylene. Journal of Plant Growth Regulation, 34, 809–827.

    Article  CAS  Google Scholar 

  • Ballhorn, D. J., Elias, J. D., Balkan, M. A., Fordyce, R. F., & Kennedy, P. G. (2017). Colonization by nitrogen-fixing Frankia bacteria causes short-term increases in herbivore susceptibility in red alder (Alnus rubra) seedlings. Oecologia, 184(2), 497–506.

    Article  Google Scholar 

  • Bashan, Y. (1998). Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances, 16(4), 729–770.

    Article  CAS  Google Scholar 

  • Batjes, N. H. A. (1997). World data set of derived soil properties by FAO UNESCO soil unit for global modeling. Soil Use and Management, 13, 9–16.

    Article  Google Scholar 

  • Batool, N., Ilyas, N., & Shahzad, A. (2014). Role of plant growth promoting rhizobacteria as ameliorating agent in saline soil. Pure and Applied Biology, 3(4), 167.

    Article  Google Scholar 

  • BCC Research. (2010). Biopesticides: The global market. Available at: http://www.bccresearch.com/market-research/chemicals/biopesticides-marketchm029c.html

  • BCC Research. (2014). Global market for biopesticides. Wellesley: Market Research Reports. Available at: https://www.bccresearch.com/market-research/chemicals/biopesticides-market-chm029c.html

  • Begon, M., Harper, J. L., & Townsend, C. R. (1990). Ecology: Individuals, populations and communities (2nd ed.p. 945). Boston: Blackwell Scientific Publications.

    Google Scholar 

  • Beneduzi, A., Ambrosini, A., & Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4), 1044–1051.

    Article  CAS  Google Scholar 

  • Bergman, B., Rai, A. N., Rasmussen, U., Elmerich, C., & Newton, W. E. (2007). Cyanobacterial associations, associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations (pp. 257–301). Dordrecht: Springer.

    Book  Google Scholar 

  • Berrada, H., & Fikri-Benbrahim, K. (2014). Taxonomy of the rhizobia: Current perspectives. British Microbiology Research Journal, 4, 616–639.

    Article  Google Scholar 

  • Bhalerao, T. S. (2012). Bioremediation of endosulfan-contaminated soil by using bioaugmentation treatment of fungal inoculant Aspergillus niger. Turkish Journal of Biology, 36(5), 561–567.

    CAS  Google Scholar 

  • Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1), 66.

    Article  Google Scholar 

  • Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350.

    Article  CAS  Google Scholar 

  • Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7–21.

    Article  CAS  Google Scholar 

  • Boiero, L., Perrig, D., Masciarelli, O., Penna, C., Cassan, F., & Luna, V. (2007). Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology, 74(4), 874–880.

    Article  CAS  Google Scholar 

  • Boiteau, R. M., Mende, D. R., Hawco, N. J., McIlvin, M. R., Fitzsimmons, J. N., Saito, M. A., Sedwick, P. N., DeLong, E. F., & Repeta, D. J. (2016). Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proceedings of the National Academy of Science, 113(50), 14237–14242.

    Article  CAS  Google Scholar 

  • Bömke, C., & Tudzynski, B. (2009). Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry, 70(15), 1876–1893.

    Article  CAS  Google Scholar 

  • Bottini, R., Cassán, F., & Piccoli, P. (2004). Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology, 65, 497–503.

    Article  CAS  Google Scholar 

  • Boukerma, L., Benchabane, M., Charif, A., & Khélifi, L. (2017). Activity of plant growth promoting rhizobacteria (PGPRs) in the biocontrol of tomato Fusarium wilt. Plant Protection Science, 53, 78–84.

    Article  CAS  Google Scholar 

  • Bradford, M. A., Davies, C. A., Frey, S. D., Maddox, T. R., Melillo, J. M., Mohan, J. E., Reynolds, J. F., Treseder, K. K., & Wallenstein, M. D. (2008). Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters, 11, 1316–1327.

    Article  Google Scholar 

  • Bravo, A., Likitvivatanavong, S., Gill, S., & Soberon, M. (2011). Bacillus thuringiensis: A story of a successful bio-insecticide. Insect Biochemistry and Molecular Biology, 41, 423–431.

    Article  CAS  Google Scholar 

  • Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237–245.

    Article  CAS  Google Scholar 

  • Campbell, R. (1985). Plant microbiology (p. 191). Baltimore: Edward Amold.

    Google Scholar 

  • Cassán, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., & Luna, V. (2009). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45, 28–35.

    Article  CAS  Google Scholar 

  • Cassán, F., Vanderleyden, J., & Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, 33, 440–459.

    Article  CAS  Google Scholar 

  • Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus based biological control of plant diseases. In M. Stoytcheva (Ed.), Pesticides in the modern world-pesticides use and management (pp. 273–302). Rijeka: InTech.

    Google Scholar 

  • Chakraborty, U., Chakraborty, B. N., Chakraborty, A. P., & Dey, P. L. (2013). Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World Journal of Microbiology and Biotechnology, 29(5), 789–803.

    Article  CAS  Google Scholar 

  • Choudhary, D. K., & Johri, B. N. (2008). Interactions of Bacillus spp. and plants -with special reference to induced systemic resistance (ISR). Microbiological Research, 164, 493–513.

    Article  CAS  Google Scholar 

  • Chung, H., Park, M., Madhaiyan, M., Seshadri, S., Song, J., Cho, H., & Sa, T. (2005). Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37, 1970–1974.

    Article  CAS  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.

    Article  CAS  Google Scholar 

  • Corbineau, F., Xia, Q., Bailly, C., & El-Maarouf-Bouteau, H. (2014). Ethylene, a key factor in the regulation of seed dormancy. Frontiers in Plant Science, 5, 539.

    Article  Google Scholar 

  • Coutinho, F. P., Felix, W. P., & Yano-Melo, A. M. (2012). Solubilization of phosphates in vitro by Aspergillus spp. and Penicillium spp. Ecological Engineering, 42, 85–89.

    Article  Google Scholar 

  • Coutinho, B. G., Licastro, D., Mendonça-Previato, L., Cámara, M., & Venturi, V. (2015). Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Molecular Plant-Microbe Interactions, 28, 10–21.

    Article  CAS  Google Scholar 

  • CPL Business Consultants. (2010). The 2010 worldwide biopesticides market summary (Vol. 1). Wallingford: CAB International Centre.

    Google Scholar 

  • Crannell, W. K., Tanaka, Y., & Myrold, D. D. (1994). Calcium and pH interaction on root nodulation of nursery-grown red alder (Alnus rubra Bong.) seedlings by Frankia. Soil Biology and Biochemistry, 26, 607–614.

    Article  CAS  Google Scholar 

  • Da Mota, F. F., Gomes, E. A., & Seldin, L. (2008). Auxin production and detection of the gene coding for the auxin efflux carrier (AEC) protein in Paenibacillus polymyxa. The Journal of Microbiology, 56, 275–264.

    Google Scholar 

  • Dardanelli, M. S., Carletti, S. M., Paulucci, N. S., Medeot, D. B., Rodriguez Caceres, E. A., Vita, F. A., Bueno, M., Fumero, M. V., & Garcia, M. B. (2010). Benefits of plant growth-promoting rhizobacteria and rhizobia in agriculture. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria, Microbiology monographs (Vol. 18, pp. 1–20). Berlin: Springer.

    Chapter  Google Scholar 

  • Dary, M., Perez, M. A. C., Palomares, A. J., & Pajuelo, E. (2010). In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177, 323–330.

    Article  CAS  Google Scholar 

  • de Bruijn, I., de Kock, M. J. D., Yang, M., de Waard, P., van Beek, T. A., & Raaijmakers, J. M. (2007). Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Molecular Microbiology, 63, 417–428.

    Article  CAS  Google Scholar 

  • De Souza, J. T. A., Arnould, C., Deulvot, C., Lemanceau, P., Gianinazzi-Pearson, V., & Raaijmakers, J. M. (2003). Effect of 2,4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology, 93, 966–975.

    Article  Google Scholar 

  • De Souza, R., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419.

    Article  Google Scholar 

  • Delvasto, P., Ballester, A., Muñoz, J. A., González, F., Blázquez, M. L., Igual, J. M., & Valverde, A. (2009). Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Minerals Engineering, 22(1), 1–9.

    Article  CAS  Google Scholar 

  • Demissie, S., Muleta, D., & Berecha, G. (2013). Effect of phosphate solubilizing bacteria on seed germination and seedling growth of faba bean (Vicia fabae L.). International Journal of Agricultural Research, 8, 123–136.

    Article  CAS  Google Scholar 

  • Dhanya, R. P., & Adeline, C. S. (2014). A study on the biocontrol of phytopathogens of Vigna radiata using Pseudomonas fluorescence in sustainable agriculture. International Journal of Current Microbiology and Applied Sciences, 3(10), 114–120.

    Google Scholar 

  • Diagne, N., Arumugam, K., Ngom, M., Nambiar-Veetil, M., Franche, C., Narayanan, K. K., & Laplaze, L. (2013). Use of Frankia and actinorhizal plants for degraded lands reclamation. BioMed Research International, 2013, 948258.

    Article  CAS  Google Scholar 

  • Dimkpa, C. O., Merten, D., Svatos, A., Büchel, G., & Kothe, E. (2009). Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. Journal of Applied Microbiology, 107, 1687–1696.

    Article  CAS  Google Scholar 

  • Dixon, R., & Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews. Microbiology, 2, 621–631.

    Article  CAS  Google Scholar 

  • Dorjey, S., Dolkar, D., & Sharma, R. (2017). Plant growth promoting rhizobacteria Pseudomonas: A review. International Journal of Current Microbiology and Applied Sciences, 6(7), 1335–1344.

    Article  CAS  Google Scholar 

  • du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14.

    Article  CAS  Google Scholar 

  • Duc, L., Noll, M., Meier, E., Burgmann, H., & Zeyer, J. (2009). High diversity of diazotrophs in the forefield of a receding alpine glacier. Microbial Ecology, 57, 179–190.

    Article  Google Scholar 

  • Dutta, S. (2015). Biopesticides: An ecofriendly approach for pest control. World Journal of Pharmacy and Pharmaceutical Sciences, 4(6), 250–265.

    Google Scholar 

  • Egamberdieva, D. (2012). Pseudomonas chlororaphis: A salt-tolerant bacterial inoculant for plant growth stimulation under saline soil conditions. Acta Physiologiae Plantarum, 34(2), 751–756.

    Article  CAS  Google Scholar 

  • Eslamyan, L., Alipour, Z. T., Beidokhty, S. R., & Sobhanipour, A. (2013). Pseudomonas fluorescens and sulfur application affect rapeseed growth and nutrient uptake in calcareous soil. International Journal of Agriculture and Crop Sciences, 5(1), 39–43.

    Google Scholar 

  • Etesami, H., Alikhani, H. A., & Hosseini, H. M. (2015). Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. Methods X, 2, 72–78.

    Google Scholar 

  • Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects – A review. Journal of Soil Science and Plant Nutrition, 17(4).

    Article  Google Scholar 

  • FAO WHO. (2002). Human vitamin and mineral requirements. Food and agriculture organization of the United Nations, Bangkok, Thailand. ISBN:1014–9228.

    Google Scholar 

  • Fatima, Z., Saleemi, M., Zia, M., Sultan, T., Aslam, M., & Riaz-ur-Rehman, C. M. F. (2009). Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. African Journal of Biotechnology, 8, 219–225.

    CAS  Google Scholar 

  • Figueiredo, M. V. B., Seldin, L., Araujo, F. F., & Mariano, R. L. R. (2011). Plant growth promoting rhizobacteria: Fundamentals and applications. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria (pp. 21–42). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Figueroa-López, A. M., Cordero-Ramírez, J. D., Martínez-Álvarez, J. C., López-Meyer, M., Lizárraga-Sánchez, G. J., Félix-Gastélum, R., Castro-Martínez, C., & Maldonado-Mendoza, I. E. (2016). Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springer Plus, 5(1), 330.

    Article  Google Scholar 

  • Franche, C., Bogusz, D., Perotto, S., & Baluska, F. (2011). Signalling and communication in actinorhizal symbiosis, Signalling and communication in plant symbiosis (pp. 73–92). Berlin: Springer.

    Google Scholar 

  • Franco-Correa, M., Quintanaa, A., Duquea, C., Suarez, C., Rodríguez, M. X., & Barea, J. (2010). Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology, 45, 209–217.

    Article  Google Scholar 

  • Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156(3), 609–643.

    Article  CAS  Google Scholar 

  • Gahan, J., & Schmalenberger, A. (2014). The role of bacteria and mycorrhiza in plant sulfur supply. Frontiers in Plant Science, 5, 723.

    Article  Google Scholar 

  • Gamalero, E., Lingua, G., Caprì, F. G., Fusconi, A., Berta, G., & Lemanceau, P. (2004). Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiology Ecology, 48, 79–87.

    Article  CAS  Google Scholar 

  • Gamit, D. A., & Tank, S. K. (2014). Effect of siderophore producing microorganism on plant growth of Cajanus cajan (Pigeon pea). International Journal of Pure and Applied Microbiology, 4(1), 20–27.

    Google Scholar 

  • Ganeshan, G., & Kumar, M. A. (2006). Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. Journal of Plant Interactions, 1(3), 123–134.

    Article  CAS  Google Scholar 

  • García-Fraile, P., Menéndez, E., & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering, 2(3), 183–205.

    Article  CAS  Google Scholar 

  • García-Gutiérrez, L., Zeriouh, H., Romero, D., Cubero, J., Vicente, A., & Pérez-García, A. (2013). The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. Microbial Biotechnology, 6(3), 264–274.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2004). Bacterial ACC deaminase and the alleviation of plant stress. Advances in Applied Microbiology, 56, 291–312.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28, 367–374.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica (Cairo), 2012, 963401.

    Google Scholar 

  • Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30–39.

    Article  CAS  Google Scholar 

  • Glick, B. R., Karaturovic, D. M., & Newell, P. C. (1995). A novel procedure for rapid isolation of plant growth promoting pseudomonads. Canadian Journal of Microbiology, 41, 533–536.

    Article  CAS  Google Scholar 

  • Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63–68.

    Article  CAS  Google Scholar 

  • Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-containing soil bacteria. European Journal of Plant Pathology, 119, 329–339.

    Article  CAS  Google Scholar 

  • Gontia-Mishra, I., Sapre, S., Sharma, A., & Tiwari, S. (2016). Amelioration of drought tolerance in wheat by the interaction of plant growth promoting rhizobacteria. Plant Biology, 18(6), 992–1000.

    Article  CAS  Google Scholar 

  • Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L., & Krishnamurthy, L. (2015). Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech, 5, 355–377.

    Article  Google Scholar 

  • Goteti, P. K., Leo, D. A. E., Desai, S., & Ahmed, S. M. H. (2013). Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in Maize (Zea mays L.). International Journal of Microbiology, 2013, 1–7.

    Article  CAS  Google Scholar 

  • Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, S. H., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140.

    Article  Google Scholar 

  • Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry, 37, 395–412.

    Article  CAS  Google Scholar 

  • Grayson, M. (2013). Agriculture and drought. Nature, 501, S1.

    Article  CAS  Google Scholar 

  • Grayston, S. J., & Germida, J. J. (1991). Sulfur-oxidizing bacteria as plant growth promoting rhizobacteria for canola. Canadian Journal of Microbiology, 37, 521–529.

    Article  CAS  Google Scholar 

  • Griffiths, B. S., & Philippot, L. (2012). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37, 112–129.

    Article  CAS  Google Scholar 

  • Grover, M., Ali, S. Z., Sandhya, V., Rasul, A., & Venkateswarlu, B. (2010). Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 27, 1231–1240.

    Article  Google Scholar 

  • Guo, Q., Dong, W., Li, S., Lu, X., Wang, P., Zhang, X., Wang, Y., & Ma, P. (2013). Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiological Research, 169, 533–540.

    Article  CAS  Google Scholar 

  • Gupta, S., & Dikshit, A. K. (2010). Biopesticides: An eco-friendly approach for pest control. Journal of Biopesticides, 3(1), 186–188.

    Google Scholar 

  • Gusain, Y. S., Kamal, R., Mehta, C. M., Singh, U. S., & Sharma, A. K. (2015). Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. Journal of Environmental Biology, 36, 301–307.

    Google Scholar 

  • Gutierrez-Luna, F. M., Lopez-Bucio, J., Tamirano-Hernandez, J., Valencia-Cantero, E., de la Cruz, H. R., & Ias-Rodriguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis, 51, 75–83.

    Article  CAS  Google Scholar 

  • Gutiérrez-Mañero, F. J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F. R., & Talon, M. (2001). The plant-growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111, 206–211.

    Article  Google Scholar 

  • Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews. Microbiology, 3, 307–319.

    Article  CAS  Google Scholar 

  • Habib, S. H., Kausar, H., & Saud, H. M. (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Research International, 2016, 6284547.

    Article  CAS  Google Scholar 

  • Haghighi, B. J., Alizadeh, O., & Firoozabadi, A. H. (2011). The role of plant growth promoting rhizobacteria (PGPR) in sustainable agriculture. Advances in Environmental Biology, 5, 3079–3083.

    Google Scholar 

  • Haidar, R., Fermaud, M., Calvo-Garrido, C., Roudet, J., & Deschamps, A. (2016). Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathologia Mediterranea, 55, 301–322.

    Google Scholar 

  • Han, H. S., & Lee, K. D. (2005). Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability, and growth of eggplant. Research Journal of Agriculture and Biological Sciences, 1, 176–180.

    Google Scholar 

  • Hansda, A., Kumar, V., Anshumali, A., & Usmani, Z. (2014). Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective. Recent Research in Science and Technology, 6(1), 131–134.

    Google Scholar 

  • Hansda, A., Kumar, V., & Anshumali. (2017). Cu-resistant Kocuria sp. CRB15: A potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech, 7(2), 132.

    Article  Google Scholar 

  • Hassan, T. U., Bano, A., & Naz, I. (2016). Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. International Journal of Phytoremediation, 19(6), 522–529.

    Article  CAS  Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25.

    Article  CAS  Google Scholar 

  • He, L. Y., Zhang, Y. F., Ma, H. Y., Su, L. N., Chen, Z. J., Wang, Q. Y., Qian, M., & Sheng, X. F. (2010). Characterization of copper resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Applied Soil Ecology, 44, 49–55.

    Article  Google Scholar 

  • Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311, 1–18.

    Article  CAS  Google Scholar 

  • Hill, D. S., Stein, J. I., Torkewitz, N. R., Morse, A. M., Howell, C. R., Pachlatko, J. P., Becker, J. O., & Ligon, J. M. (1994). Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Applied and Environmental Microbiology, 60(1), 78–85.

    CAS  Google Scholar 

  • Hiltner, L. (1904). Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arb Dtsch Landwirtsch Ges, 98, 59–78.

    Google Scholar 

  • Hoflich, G., & Kuhn, G. (1996). Forderung das Wachstums und der Nährstoffaufnahme bei kurziferen Ö l- und Zwischenfruhten durch inokulierte Rhizospherenmikroorganismen. Zeischrift für Pflanzenernährung und Bodenkunde, 159, 575–578.

    Article  Google Scholar 

  • Hofte, M., Boelens, J., & Verstraete, W. (1992). Survival and root colonization of mutants of plant growth promoting pseudomonads affected in siderophore biosynthesis or regulation of siderophore production. Journal of Plant Nutrition, 15, 2253–2262.

    Article  CAS  Google Scholar 

  • Hrynkiewicz, K., & Baum, C. (2011). The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In A. Malik & E. Grohmann (Eds.), Environmental protection strategies for sustainable development (pp. 35–64). Berlin: Springer.

    Google Scholar 

  • Huang, X. D., El-Alawi, Y., Gurska, J., Glick, B. R., & Greenberg, B. M. (2005). A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 8, 139–147.

    Article  CAS  Google Scholar 

  • Hussain, A., & Hasnain, S. (2009). Cytokinin production by some bacteria: Its impact on cell division in cucumber cotyledons. African Journal of Microbiology Research, 3, 704–712.

    CAS  Google Scholar 

  • Hussain, A., Arshad, M., Zahir, Z. A., & Asghar, M. (2015). Prospectus of zinc solubilizing bacteria for improving growth and physiology of maize. Pakistan Journal of Agricultural Sciences, 52(4), 915–922.

    Google Scholar 

  • Ilangumaran, G., & Smith, D. L. (2017). Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Frontiers in Plant Science, 8, 1768.

    Article  Google Scholar 

  • Iqbal, U., Jamil, N., Ali, I., & Hasnain, S. (2010). Effect of zinc-phosphate-solubilizing bacterial isolates on growth of Vigna radiata. Annales de Microbiologie, 60, 243–248.

    Article  Google Scholar 

  • Islam, M., Sultana, T., Joe, M. M., Yim, W., Cho, J. C., & Sa, T. (2013). Nitrogen-fixing bacteria with multiple plant growth promoting activities enhances growth of tomato and red pepper. Journal of Basic Microbiology, 53(12), 1004–1015.

    Article  CAS  Google Scholar 

  • Islam, S., Akanda, A. M., Prova, A., Islam, M. T., & Hossain, M. M. (2015). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6, 1360.

    Google Scholar 

  • Jadhav, H. P., & Sayyed, R. J. (2016). Hydrolytic enzymes of rhizospheric microbes in crop protection. MedCrave Online Journal of Cell Science & Report, 3(5), 00070.

    Google Scholar 

  • Jha, Y., Subramanian, R. B., & Patel, S. (2011). Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiologiae Plantarum, 33, 797–802.

    Article  Google Scholar 

  • Kageyama, K., & Nelson, E. B. (2003). Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Applied and Environmental Microbiology, 69(2), 1114–1120.

    Article  CAS  Google Scholar 

  • Kang, S. M., Khan, A. L., You, Y. H., Kim, J. G., Kamran, M., & Lee, I. J. (2014). Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. Journal of Microbiology and Biotechnology, 24, 106–112.

    Article  CAS  Google Scholar 

  • Karnwal, A. (2017). Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L.) rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.). Journal of Plant Protection Research, 57(2), 144–151.

    Article  Google Scholar 

  • Kaushal, M., & Wani, S. P. (2016). Plant-growth-promoting rhizobacteria: Drought stress alleviators to ameliorate crop production in drylands. Annales de Microbiologie, 66(1), 35–42.

    Article  CAS  Google Scholar 

  • Keel, C., Voisard, C., Berling, C. H., Kahir, G., & Defago, G. (1989). Iron sufficiency is a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology, 79, 584–589.

    Article  Google Scholar 

  • Kejela, T., Thakkar, V. R., & Thakor, P. (2016). Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiology, 16(1), 277.

    Article  CAS  Google Scholar 

  • Kertesz, M. A., & Mirleau, P. (2004). The role of microbes in plant sulphur supply. Journal of Experimental Botany, 55, 1939–1945.

    Article  CAS  Google Scholar 

  • Khalid, A., Tahir, S., Arshad, M., & Zahir, Z. A. (2004). Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Australian Journal of Soil Research, 42, 921–926.

    Article  CAS  Google Scholar 

  • Khalid, S., Akhtar, M. J., Mahmood, M. H., & Arshad, M. (2006). Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology, 75, 231–236.

    Article  CAS  Google Scholar 

  • Khan, A. G. (2005). Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 355–364.

    Article  CAS  Google Scholar 

  • Khan, N., & Bano, A. (2016). Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. International Journal of Phytoremediation, 18(3), 211–221.

    Article  CAS  Google Scholar 

  • Khan, M. H., & Panda, S. K. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl salinity stress. Acta Physiologiae Plantarum, 30, 89–91.

    Google Scholar 

  • Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate solubilizing microorganisms in sustainable agriculture – A review. Agronomy for Sustainable Development, 27, 29–43.

    Article  Google Scholar 

  • Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S., & Rasheed, M. (2009). Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. Journal of Agricultural and Biological Science, 1(1), 48–58.

    Google Scholar 

  • Khare, E., & Arora, N. K. (2010). Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Current Microbiology, 61, 64–68.

    Article  CAS  Google Scholar 

  • Khare, E., & Arora, N. K. (2011). Physiochemical and structural characterization of biosurfactant from fluorescent Pseudomonas with biocontrol activity against Macrophomina phaseolina. Proceedings of the 2nd Asian PGPR conference (pp. 104–109), China.

    Google Scholar 

  • Khare, E., Kumar, S., & Kim, K. (2018). Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusarium oxysporum and chickpea wilt. Environmental Sustainability, 1(1), 39–47.

    Article  Google Scholar 

  • Khatibi, R. (2011). Using sulfur oxidizing bacteria and P solubilizing for enhancing phosphorous availability to Raphanus sativus. African Journal of Plant Science, 5(8), 430–435.

    CAS  Google Scholar 

  • Kishore, G. K., Pande, S., & Podile, A. R. (2005). Biological control of collar rot disease with broad spectrum antifungal bacteria associated with groundnut. Canadian Journal of Microbiology, 51, 122–132.

    Article  Google Scholar 

  • Kloepper, J. W., & Schroth, M. N. (1978). Plant growth promoting rhizobacteria on radish. In Station de pathologie végétale et phyto-bacteriologie (Ed.), Proceedings of the 4th conference plant pathogenic bacteria (pp. 879–882). Angers: INRA.

    Google Scholar 

  • Kong, Z., & Glick, B. R. (2017). The role of bacteria in phytoremediation. Applied Bioengineering, 327–353.

    Google Scholar 

  • Kong, J., Dong, Y., Xu, L., Liu, S., & Bai, X. (2014). Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Botanical Studies, 55, 9.

    Article  CAS  Google Scholar 

  • Korir, H., Mungai, N. W., Thuita, M., Hamba, Y., & Masso, C. (2017). Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science, 8, 141.

    Article  Google Scholar 

  • Kotasthane, A. S., Agrawal, T., Zaidi, N. W., & Singh, U. S. (2017). Identification of siderophore producing and cynogenic fluorescent Pseudomonas and a simple confrontation assay to identify potential bio-control agent for collar rot of chickpea. 3 Biotech, 7, 137.

    Article  Google Scholar 

  • Krapp, A., Berthomé, R., Orsel, M., Mercey-Boutet, S., Yu, A., Castaings, L., Elftieh, S., Major, H., Renou, J. P., & Daniel-Vedele, F. (2011). Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiology, 157, 1255–1282.

    Article  CAS  Google Scholar 

  • Kravchenko, L. V., Azarova, T. S., Makarova, N. M., & Tikhonovich, I. A. (2004). The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology, 73(2), 156–158.

    Article  CAS  Google Scholar 

  • Kucera, B., Cohn, M. A., & Leubner-Metzger, G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Science Research, 15, 281–307.

    Article  CAS  Google Scholar 

  • Kudoyarova, G. R., Arkhipova, T. N., & Melent’ev, A. I. (2015). Role of bacterial phytohormones in plant growth regulation and their development. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 69–86). Cham: Springer.

    Chapter  Google Scholar 

  • Kumar, S., & Singh, A. (2015). Biopesticides: Present status and the future prospects. J Fertil Pestic, 6(2), 100–129.

    Google Scholar 

  • Kumar, A., Prakash, A., & Johri, B. N. (2011). Bacillus as PGPR in Crop Ecosystem. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Crop ecosystems (pp. 37–59). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Kumari, M. E. R., Gopal, A. V., & Lakshmipathy, R. (2018). Effect of stress tolerant plant growth promoting rhizobacteria on growth of blackgram under stress condition. International Journal of Current Microbiology and Applied Sciences, 7(1), 1479–1487.

    Article  Google Scholar 

  • Kundan, R., Pant, G., Jadon, N., & Agrawal, P. K. (2015). Plant growth promoting rhizobacteria: Mechanism and current prospective. Journal of Fertilizers & Pesticides, 6, 155.

    Article  Google Scholar 

  • Ladau, J., Shi, Y., Jing, X., He, J. S., Chen, L., Lin, X., Fierer, N., Gilbert, J. A., Pollard, K. S., & Chu, H. (2017). Climate change will lead to pronounced shifts in the diversity of soil microbial communities. bioRxiv, 180174.

    Google Scholar 

  • Laranjo, M., Alexandre, A., & Oliveira, S. (2014). Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiological Research, 169(1), 2–17.

    Article  Google Scholar 

  • Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90, 575–587.

    Article  CAS  Google Scholar 

  • Lata, S. A. K., & Tilak, K. V. B. R. (2002). Biofertilizers to augment soil fertility and crop production. In K. R. Krishna (Ed.), Soil fertility and crop production (pp. 279–312). Madison: Science Publishers.

    Google Scholar 

  • Leigh, G. J. (2002). Nitrogen fixation at the millennium (p. 470). Amsterdam: Elsevier Science.

    Google Scholar 

  • Li, F. C., Li, S., Yang, Y. Z., & Cheng, L. J. (2006). Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrologica et Mineralogica, 25, 440–448.

    CAS  Google Scholar 

  • Li, Y., Liu, X., Hao, T., & Chen, S. (2017). Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates. International Journal of Molecular Sciences, 18(7), 1253.

    Article  CAS  Google Scholar 

  • Liu, P., Luoa, L., & Long, C. (2013). Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biological Control, 67, 157–162.

    Article  CAS  Google Scholar 

  • Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse, C. M. J., & Schenk, P. M. (2017). Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, 8, 1–17.

    Google Scholar 

  • Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697.

    Article  CAS  Google Scholar 

  • Loganathan, M., Garg, R., Venkataravanappa, V., Saha, S., & Rai, A. B. (2014). Plant growth promoting rhizobacteria (PGPR) induces resistance against Fusarium wilt and improves lycopene content and texture in tomato. African Journal of Microbiology Research, 8(11), 1105–1111.

    Article  CAS  Google Scholar 

  • Long, X. X., Yang, X. E., & Ni, W. Z. (2002). Current status, and prospective on phytoremediation of heavy metal polluted soils. Journal of Applied Ecology, 13, 757–762.

    CAS  Google Scholar 

  • Long, S. P., Zhu, X. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 29, 315–330.

    Article  CAS  Google Scholar 

  • Loper, J. E., & Buyer, J. S. (1991). Siderophores in microbial interactions of plant surfaces. Molecular Plant-Microbe Interactions, 4, 5–13.

    Article  CAS  Google Scholar 

  • Lucas, J. A., Ramos-Solano, B., Montes, F., Ojeda, J., Megias, M., & Gutierrez Mañero, F. J. (2009). Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa L.) in Southern Spain. Field Crops Research, 114, 404–410.

    Article  Google Scholar 

  • Lucas-Garcia, J., Probanza, A., Ramos, B., Barriuso, J., & Gutierrez-Mañero, F. (2004). Effects of inoculation with plant growth rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant and Soil, 267, 143–153.

    Article  Google Scholar 

  • Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek, 86, 1–25.

    Article  CAS  Google Scholar 

  • Lugtenberg, B. J. J. (2015). Introduction to plant-microbe interactions. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 1–2). Cham: Springer.

    Google Scholar 

  • Lugtenberg, B. J. J., & Dekkers, L. C. (1999). What makes Pseudomonas bacteria rhizosphere competent? Environmental Microbiology, 1, 9–13.

    Article  CAS  Google Scholar 

  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

    Article  CAS  Google Scholar 

  • Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology, 39, 461–490.

    Article  CAS  Google Scholar 

  • Lugtenberg, B. J. J., Chin-A-Woeng, T. F. C., & Bloemberg, G. V. (2002). Microbe-plant interactions: Principles and mechanisms. Antonie Van Leeuwenhoek, 81, 373–383.

    Article  CAS  Google Scholar 

  • Lukkani, N. J., & Reddy, E. S. (2014). Evaluation of plant growth promoting attributes and biocontrol potential of native fluorescent Pseudomonas spp. against Aspergillus niger causing collar rot of ground nut. International Journal of Plant, Animal and Environmental Sciences, 4(4), 256–262.

    CAS  Google Scholar 

  • Ma, Y., Prasad, M. N. V., Rajkumar, M., & Freitas, H. (2011). Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29, 248–258.

    Article  CAS  Google Scholar 

  • Ma, Y., Oliveira, R. S., Wu, L., Luo, Y., Rajkumar, M., Rocha, I., & Freitas, H. (2015). Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. Journal of Toxicology and Environmental Health, 78, 931–944.

    Article  CAS  Google Scholar 

  • Ma, Y., Oliveira, R. S., Freitas, H., & Zhang, C. (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation. Frontiers in Plant Science, 7, 918.

    Google Scholar 

  • Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2016). Biofertilizers: A potential approach for sustainable agriculture development. Environmental Science and Pollution Research International, 24, 3315–3335.

    Article  CAS  Google Scholar 

  • Maheshwari, D. K., Kumar, S., Maheshwari, N. K., Patel, D., & Saraf, M. (2012a). Nutrient availability and management in the rhizosphere by microorganisms. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management (pp. 301–325). Berlin: Springer.

    Chapter  Google Scholar 

  • Maheshwari, D. K., Dubey, R. C., Aeron, A., Kumar, B., Kumar, S., Tewari, S., & Arora, N. (2012b). Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World Journal of Microbiology and Biotechnology, 28(10), 3015–3024.

    Article  CAS  Google Scholar 

  • Maheshwari, D. K., Dheeman, S., & Agarwal, M. (2015). Phytohormone-producing PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Bacterial metabolites in sustainable agroecosystem (pp. 159–182). Cham: Springer.

    Chapter  Google Scholar 

  • Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: A review. FEMS Microbiology Ecology, 92(8), 1–14.

    Article  CAS  Google Scholar 

  • Majeed, A., Abbasi, M. K., Hameed, S., Imran, A., & Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6, 198.

    Article  Google Scholar 

  • Maksimov, I. V., Abizgil’dina, R. R., & Pusenkova, L. I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (Review). Applied Biochemistry and Microbiology, 47, 333–345.

    Article  CAS  Google Scholar 

  • Malusá, E., & Vassilev, N. (2014). A contribution to set a legal framework for biofertilisers. Applied Microbiology and Biotechnology, 98, 6599–6607.

    Article  CAS  Google Scholar 

  • Mamta, R. P., Pathania, V., Gulati, A., Singhd, B., Bhanwra, R. K., & Tewari, R. (2010). Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 46, 222–229.

    Article  Google Scholar 

  • Marketsandmarkets. (2014). Biopesticides market by active ingredient, by types, by application, by formulation, by crop type and by geography. Pune: Marketsandmarkets Available at: MarketResearch.com.

    Google Scholar 

  • Marketsandmarkets.com. (2016). Biofertilizers market by type (nitrogen-fixing, phosphate-solubilizing, potash-mobilizing), microorganism (Rhizobium, Azotobacter, Azospirillum, Cyanobacteria, P-Solubilizer), mode of application, crop type, form, and region – Global forecast to 2022. Available at: www.marketsandmarkets.com.

    Google Scholar 

  • Marschner, H. (2012). Marschner’s mineral nutrition of higher plants (3rd ed., p. 672). London: Academic.

    Chapter  Google Scholar 

  • Martinez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G. M. L. M., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10(3), 293–319.

    Article  Google Scholar 

  • Meena, H., Ahmed, M. A., & Prakash, P. (2015). Amelioration of heat stress in wheat, Triticum aestivum by PGPR (Pseudomonas aeruginosa strain 2CpS1). Bioscience Biotechnology Research Communications, 8(2), 171–174.

    Google Scholar 

  • Merzaeva, O. V., & Shirokikh, I. G. (2006). Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology, 75, 226–230.

    Article  CAS  Google Scholar 

  • Meyer, S. L. F., Everts, K. L., Gardener, B. M., Masler, E. P., Abdelnabby, H. M. E., & Skantar, A. M. (2016). Assessment of DAPG-producing Pseudomonas fluorescens for Management of Meloidogyne incognita and Fusarium oxysporum on Watermelon. Journal of Nematology, 48(1), 43–53.

    Article  CAS  Google Scholar 

  • Meziane, H., Vander, S. I., van Loon, L. C., Höfte, M., & Bakker, P. A. H. M. (2005). Determinants of P. putida WCS 358 involved in induced systemic resistance in plants. Molecular Plant Pathology, 6, 177–185.

    Article  Google Scholar 

  • Mia, M. A. B., & Shamsuddin, Z. H. (2010). Rhizobium as a crop enhancer and biofertilizer for increased cereal production. African Journal of Biotechnology, 9(37), 6001–6009.

    Google Scholar 

  • Miethke, M., & Marahiel, M. A. (2007). Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71(3), 413–451.

    Article  CAS  Google Scholar 

  • Mishra, S., & Arora, N. K. (2011). Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv campestris. World Journal of Microbiology and Biotechnology, 28(2), 693–702.

    Article  Google Scholar 

  • Mishra, S., & Arora, N. K. (2012). Management of black rot in cabbage by rhizospheric Pseudomonas sp. and analysis of 2, 4-diacetylphloroglucinol by qRT-PCR. Biological Control, 61, 29–32.

    Article  CAS  Google Scholar 

  • Mishra, J., & Arora, N. K. (2018). Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Applied Soil Ecology, 125, 35–45.

    Article  Google Scholar 

  • Mishra, P., & Das, D. (2014). Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience: J Sustain Develop, 11(1), 41–61.

    Google Scholar 

  • Mishra, P. K., Bisht, S. C., Bisht, J. K., & Bhatt, J. C. (2012). Cold tolerant PGPRs as bioinoculants for stress management. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management (pp. 95–118). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Mishra, J., Tewari, S., Singh, S., & Arora, N. K. (2015). Biopesticides: Where we stand? In N. K. Arora (Ed.), Plant microbes symbiosis: Applied facets (pp. 37–75). New Delhi: Springer.

    Google Scholar 

  • Mishra, J., Singh, R., & Arora, N. K. (2017a). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 8, 1706.

    Article  Google Scholar 

  • Mishra, J., Singh, R., & Arora, N. K. (2017b). Plant growth-promoting microbes: Diverse roles in agriculture and environmental sustainability. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics and plant health (pp. 71–111). Singapore: Springer.

    Chapter  Google Scholar 

  • Mitter, E. K., de Freitas, J. R., & Germida, J. J. (2017). Bacterial root microbiome of plants growing in oil sands reclamation covers. Frontiers in Microbiology, 8, 70.

    Google Scholar 

  • Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 638–649.

    Google Scholar 

  • Moustaine, M., Elkahkahi, R., Benbouazza, A., Benkirane, R., & Achbani, E. (2017). Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth in tomato (Solanum lycopersicum L.) and characterization for direct PGP abilities in Morocco. International Journal of Agriculture Environment & Biotechnology, 2, 590–595.

    Article  Google Scholar 

  • Mus, F., Crook, M. B., Garcia, K., Costas, A. G., Geddes, B. A., Kouri, E. D., Paramasivan, P., Ryu, M. H., Oldroyd, G. E., Poole, P. S., & Udvardi, M. K. (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology, 82(13), 3698–3710.

    Article  CAS  Google Scholar 

  • Nadeem, S. M., Zahir, Z. A., Naveed, M., Asghar, H. N., & Arshad, M. (2010). Rhizobacteria capable of producing ACC deaminase may mitigate salt stress in wheat. Soil Science Society of America Journal, 74, 533–542.

    Article  CAS  Google Scholar 

  • Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429–448.

    Article  Google Scholar 

  • Nahas, E. (1996). Factors determining rock phosphate solubilization by microorganisms isolated from soil. World Journal of Microbiology and Biotechnology, 12(6), 567–572.

    Article  CAS  Google Scholar 

  • Nakkeeran, S., Dilantha Fernando, W. G., & Siddiqui, A. (2005). Plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 257–296). Dordrecht: Springer.

    Google Scholar 

  • Nandi, M., Selin, C., Brassinga, A. K. C., Belmonte, M. F., Fernando, W. G. D., Loewen, P. C., & de Kievit, T. R. (2015). Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One, 10, e0123184.

    Article  CAS  Google Scholar 

  • Narula, N., Deubel, A., Gans, W., Behl, R. K., & Merbach, W. (2006). Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant, Soil and Environment, 52(3), 119–129.

    Article  CAS  Google Scholar 

  • Naz, I., Ahmad, H., Khokhar, S. N., Khan, K., & Shah, A. H. (2016). Impact of zinc solubilizing bacteria on zinc contents of wheat. American-Eurasian Journal of Agricultural & Environmental Sciences, 16(3), 449–454.

    CAS  Google Scholar 

  • Nazir, Q., Akhtar, M. J., Imran, M., Arshad, M., Hussain, A., Mahmood, S., & Hussain, S. (2017). Simultaneous use of plant growth promoting rhizobacterium and nitrogenous fertilizers may help in promoting growth, yield, and nutritional quality of okra. Journal of Plant Nutrition, 40(9), 1339–1350.

    Article  CAS  Google Scholar 

  • Nie, M., Bell, C., Wallenstein, M. D., & Pendall, E. (2015). Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2. Scientific Reports, 5, 9212.

    Article  CAS  Google Scholar 

  • Nobbe, F., & Hiltner, L. (1896). Inoculation of the soil for cultivating leguminous plants. U.S. Patent 570 813.

    Google Scholar 

  • Normile, D. (2008). Reinventing rice to feed the world. Science, 321, 330–333.

    Article  CAS  Google Scholar 

  • Noumavo, P. A., Agbodjato, N. A., Baba-Moussa, F., Adjanohoun, A., & Baba-Moussa, L. (2016). Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. African Journal of Biotechnology, 15, 1452–1463.

    Article  CAS  Google Scholar 

  • Okon, G., Okon, E., & Glory, I. (2014). Effect of bioremediation on early seedling growth of Amaranthus hybridus L. grown on palm oil mill effluent polluted soil. International Journal of Biological Research, 2(2), 84–86.

    Google Scholar 

  • Omidvari, M., Sharifi, R. A., Ahmadzadeh, M., & Dahaji, P. A. (2010). Role of fluorescent pseudomonads siderophore to increase bean growth factors. The Journal of Agricultural Science, 2(3), 242–247.

    Google Scholar 

  • Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125.

    Article  CAS  Google Scholar 

  • Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(8), 701–712.

    Article  Google Scholar 

  • Oteino, N., Lally, R. D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K. J., & Dowling, D. N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745.

    Article  Google Scholar 

  • Owen, D., Williams, A. P., Griffith, G. W., & Withers, P. J. A. (2015). Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Applied Soil Ecology, 86, 41–54.

    Article  Google Scholar 

  • Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. Plant Health Instructor, 2, 1117–1142.

    Google Scholar 

  • Pandya, N. D., & Desai, P. V. (2014). Screening and characterization of GA3 producing Pseudomonas monteilii and its impact on plant growth promotion. International Journal of Current Microbiology and Applied Sciences, 3(5), 110–115.

    CAS  Google Scholar 

  • Parmar, P., & Sindhu, S. S. (2013). Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. Journal of Microbiology Research, 3(1), 25–31.

    Google Scholar 

  • Parnell, J. J., Berka, R., Young, H. A., Sturino, J. M., Kang, Y., Barnhart, D. M., & Dileo, M. V. (2016). From the lab to the farm: An industrial perspective of plant beneficial microorganisms. Frontiers in Plant Science, 7, 1110.

    Article  Google Scholar 

  • Patten, C., & Glick, B. (2002). Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795–3801.

    Article  CAS  Google Scholar 

  • Paul, D., & Lade, H. (2014). Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: A review. Agronomy for Sustainable Development, 34, 737–752.

    Article  Google Scholar 

  • Peix, A., Mateos, P. F., Rodríguez-Barrueco, C., Martínez-Molina, E., & Velázquez, E. (2001). Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology and Biochemistry, 33, 1927–1935.

    Article  CAS  Google Scholar 

  • Pendall, E., Mosier, A. R., & Morgan, J. A. (2004). Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. The New Phytologist, 162, 447–458.

    Article  Google Scholar 

  • Penuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B., & Schnitzler, J. P. (2014). Biogenic volatile emissions from the soil. Plant, Cell & Environment, 37, 1866–1891.

    Article  CAS  Google Scholar 

  • Perez-Fernández, M., & Alexander, V. (2017). Enhanced plant performance in Cicer arietinum L. due to the addition of a combination of plant growth-promoting bacteria. Agriculture, 7(5), 40.

    Article  CAS  Google Scholar 

  • Pérez-Montaño, F., Jiménez-Guerrero, I., Contreras Sánchez-Matamoros, R., López-Baena, F. J., Ollero, F. J., Rodríguez-Carvajal, M. A., Bellogín, R. A., & Espuny, M. R. (2013). Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Microbiological Research, 164, 749–760.

    Google Scholar 

  • Pérez-Montaño, F., Cynthia, A., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J., & Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169(5), 325–336.

    Article  Google Scholar 

  • Piccoli, P., Lucangeli, C. D., Schneider, G., & Bottini, R. (1997). Hydrolysis of gibberellin A20-glucoside and gibberellin A20-glucosyl ester by Azospirillum lipoferum cultured in a nitrogen-free biotin based chemically-defined medium. Plant Growth Regulation, 23, 179–182.

    Article  CAS  Google Scholar 

  • Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., & Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.

    Article  CAS  Google Scholar 

  • Ping, L., & Boland, W. (2004). Signals from the underground: Bacterial volatiles promote growth in Arabidopsis. Trends in Plant Science, 9, 263–266.

    Article  CAS  Google Scholar 

  • Pinter, I. F., Salomon, M. V., Berli, F., Bottini, R., & Piccoli, P. (2017). Characterization of the As (III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Applied Soil Ecology, 109, 60–68.

    Article  Google Scholar 

  • Pires, C., Franco, A. R., Pereira, S. I. A., Henriques, I., Correia, A., Magan, N., & Castro, P. M. L. (2017). Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiology J, 1–9.

    Google Scholar 

  • Podile, A. R., & Kishore, G. K. (2006). Plant growth-promoting rhizobacteria. In S. S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 195–230). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Postgate, J. R. (1998). Nitrogen fixation (p. 252). Cambridge: Cambridge University Press.

    Google Scholar 

  • PR Newswire. (2017). Global markets for biopesticides. Available at: https://www.prnewswire.com/news-releases/global-markets-forbiopesticides300385145

  • Prajapati, K., & Modi, H. A. (2016). Growth promoting effect of potassium solubilizing Enterobacter hormaechei (KSB-8) on Cucumber (Cucumis sativus) under hydroponic conditions. International Journal of Advanced Research in Biological Sciences, 3(5), 168–173.

    CAS  Google Scholar 

  • Press, C. M., Wilson, M., Tuzun, S., & Kloepper, J. W. (1997). SA produced by S. marcescens 90–166 is not the primary determinant of ISR in cucumber/tobacco. Molecular Plant-Microbe Interactions, 10, 761–768.

    Article  CAS  Google Scholar 

  • Prithiviraj, B., Zhou, X., Souleimanov, A., Kahn, W. M., & Smith, D. L. (2003). A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. Planta, 21, 437–445.

    Google Scholar 

  • Qaisrani, M. M., Mirza, M. S., Zaheer, A., & Malik, K. A. (2014). Isolation and identification by 16s rRNA sequence analysis of Achromobacter, Azospirillum and Rhodococcus strains from the rhizosphere of maize and screening for the beneficial effect on plant growth. Pakistan Journal of Agricultural Sciences, 51, 91–99.

    Google Scholar 

  • Qurashi, A. W., & Sabri, A. N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology, 43, 1183–1191.

    Article  CAS  Google Scholar 

  • Raaijmakers, J. M., & Weller, D. M. (2001). Exploiting genotype diversity of 2, 4-diacetylphloroglucinol producing Pseudomonas spp.: Characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Applied and Environmental Microbiology, 67, 2545–2554.

    Article  CAS  Google Scholar 

  • Raaijmakers, J. M., de Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews, 34, 1037–1062.

    Article  CAS  Google Scholar 

  • Rabie, G. H., & Almadini, A. M. (2005). Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology, 4, 210–222.

    CAS  Google Scholar 

  • Rabosto, X., Garrau, M., Paz, A., Boido, E., Dellacassa, E., & Carrau, F. (2006). Grapes and vineyard soils as source of microorganisms for biological control of Botrytis cinerea. American Journal of Enology and Viticulture, 57, 332–338.

    Google Scholar 

  • Raghavendra, A. S., Gonugunta, V. K., Christmann, A., & Grill, E. (2010). ABA perception and signalling. Trends in Plant Science, 15(7), 395–401.

    Article  CAS  Google Scholar 

  • Rais, A., Jabeen, Z., Shair, F., Hafeez, F. Y., & Hassan, M. N. (2017). Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One, 12(11), e0187412.

    Article  CAS  Google Scholar 

  • Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28, 142–149.

    Article  CAS  Google Scholar 

  • Rajwar, A., Sahgal, M., & Johri, B. N. (2013). Legume-rhizobia symbiosis and interactions in agroecosystems. In N. K. Arora (Ed.), Plant microbe symbiosis-fundamentals and advances (pp. 233–265). New Delhi: Springer.

    Chapter  Google Scholar 

  • Ramadan, E. M., AbdelHafez, A. A., Hassan, E. A., & Saber, F. M. (2016). Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. African Journal of Microbiology Research, 10(15), 486–504.

    Article  CAS  Google Scholar 

  • Ramos-Solano, B., Barriuso-Maicas, J., de la Iglesia, M. T. P., Domenech, J., & Gutiérrez Mañero, F. J. (2008). Systemic disease protection elicited by plant growth promoting rhizobacteria strains: Relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology, 98, 451–457.

    Article  CAS  Google Scholar 

  • Ramyasmruthi, S., Pallavi, O., Pallavi, S., Tilak, K., & Srividya, S. (2012). Chitinolytic and secondary metabolite producing Pseudomonas fluorescens isolated from Solanaceae rhizosphere effective against broad spectrum fungal phytopathogens. Asian Journal of Plant Science & Research, 2, 16–24.

    CAS  Google Scholar 

  • Rana, A., Kabi, S. R., Verma, S., Adak, A., Pal, M., Shivay, Y. S., Prasanna, R., & Nain, L. (2015). Prospecting plant growth promoting bacteria and cyanobacteria as options for enrichment of macro and micronutrients in grains in rice wheat cropping sequence. Cogent Food & Agriculture, 1, 10373–10379.

    Article  CAS  Google Scholar 

  • Rangel, W. M., Thijs, S., Janssen, J., Oliveira Longatti, S. M., Bonaldi, D. S., Ribeiro, P. R., Jambon, I., Eevers, N., Weyens, N., Vangronsveld, J., & Moreira, F. M. S. (2017). Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil. International Journal of Phytoremediation, 19, 142–156.

    Article  CAS  Google Scholar 

  • Rao, D. L. N., Mohanty, S. R., Acharya, C., & Atoliya, N. (2018). Rhizobial taxonomy-current status (Newsletter No. 3, pp. 1–4). Indo-UK Nitrogen Fixation Centre (IUNFC).

    Google Scholar 

  • Reddy, M. S., Ilao, R. I., Faylon, P. S., Dar, W. D., Batchelor, W. D., Sayyed, R., Sudini, H., Vijay Krishna Kumar, K., Armanda, A., & Gopalkrishnan, S. (Eds.). (2014). Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture (p. 510). Newcastle upon Tyne: Cambridge Scholars Publishing.

    Google Scholar 

  • Reetha, S., Bhuvaneswari, G., Thamizhiniyan, P., & Mycin, T. R. (2014). Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa. L). International Journal of Current Microbiology and Applied Sciences, 3(2), 568–574.

    Google Scholar 

  • Reitz, M., Oger, P., Meyer, A., Niehaus, K., Farrand, S. K., Hallmann, J., & Sikora, R. A. (2002). Importance of the O-antigen, core-region and lipid A of rhizobial LPS for the induction of SR in potato to Globodera pallida. Nematology, 4, 73–79.

    Article  CAS  Google Scholar 

  • Research Nester. (2018). Biofertilizers market: global demand analysis & opportunity outlook 2023. Available at: https://www.researchnester.com/reports/biofertilizers-market-global-demand-analysis-opportunity-outlook-2023/193.

  • Review, M. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302(1), 1–17.

    Google Scholar 

  • Riadh, K., Wided, M., Hans-Werner, K., & Chedly, A. (2010). Responses of halophytes to environmental stresses with special emphasis to salinity. Advances in Botanical Research, 53, 117–145.

    Article  CAS  Google Scholar 

  • Ribaudo, C. M., Krumpholz, E. M., Cassán, F. D., Bottini, R., Cantore, M. L., & Cura, J. A. (2006). Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. Journal of Plant Growth Regulation, 25, 175–185.

    Article  CAS  Google Scholar 

  • Roberson, E. B., & Firestone, M. K. (1992). Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Applied and Environmental Microbiology, 58, 1284–1291.

    CAS  Google Scholar 

  • Rodriguez, H., Gonzalez, T., Goire, I., & Bashan, Y. (2004). Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften, 91(11), 552–555.

    Article  CAS  Google Scholar 

  • Rodríguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287, 15–21.

    Article  CAS  Google Scholar 

  • Rogers, J. R., Bennett, P. C., & Choi, W. J. (1998). Feldspars as a source of nutrients for microorganisms. American Mineralogist, 83, 1532–1540.

    Article  CAS  Google Scholar 

  • Romeh, A. A., & Hendawi, M. Y. (2014). Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). Journal of Agricultural Science and Technology, 16(2), 265–276.

    Google Scholar 

  • Roper, M. M., & Gupta, V. S. R. (2016). Enhancing non-symbiotic N2 fixation in agriculture. Open Agriculture Journal, 10, 7–27.

    Article  CAS  Google Scholar 

  • Rosenblueth, M., & Martínez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19, 827–837.

    Article  CAS  Google Scholar 

  • Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters, 278(1), 1–9.

    Article  CAS  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Paré, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 100(8), 4927–4932.

    Article  CAS  Google Scholar 

  • Saha, M., Sarkar, S., Sarkar, B., Sharma, B. K., Bhattacharjee, S., & Tribedi, P. (2016). Microbial siderophores and their potential applications: A review. Environmental Science and Pollution Research, 23, 3984–3999.

    Article  CAS  Google Scholar 

  • Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sci Med Res, 21, 1–30.

    Google Scholar 

  • Sahgal, M., & Johri, B. N. (2003). The changing face of rhizobial systematic. Current Science, 84(1), 43–48.

    Google Scholar 

  • Sahoo, R. K., Bhardwaj, D., & Tuteja, N. (2013). Biofertilizers: A sustainable eco-friendly agricultural approach to crop improvement. In N. Tuteja & S. S. Gill (Eds.), Plant acclimation to environmental stress (pp. 403–432). New York: Springer.

    Chapter  Google Scholar 

  • Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V. K., & Saikia, R. (2018). Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8, 35–60.

    Article  CAS  Google Scholar 

  • Salam, M. A., & Noguchi, T. (2005). Impact of human activities on carbon dioxide (CO2) emissions: A statistical analysis. Environmentalist, 25, 19.

    Article  Google Scholar 

  • Salamone, I. E. G., Hynes, R. K., & Nelson, L. M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47, 404–411.

    Article  Google Scholar 

  • Salamone, I. E. G., Hynes, R. K., & Nelson, L. M. (2005). Role of cytokinins in plant growth promotion by rhizosphere bacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 173–195). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34, 635–648.

    Article  CAS  Google Scholar 

  • Salimpour, S., Khavazi, K., Nadian, H., Besharati, H., & Miransari, M. (2010). Enhancing phosphorus availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal of Crop Science, 4, 330–334.

    CAS  Google Scholar 

  • Salisbury, F. B. (1994). The role of plant hormones. In R. E. Wilkinson (Ed.), Plant-environment interactions (pp. 39–81). New York: USA.

    Google Scholar 

  • Sanchis, V., & Bourguet, D. (2008). Bacillus thuringiensis: Applications in agriculture and insect resistance management: A review. Agronomy for Sustainable Development, 28(1), 11–20.

    Article  Google Scholar 

  • Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., & Venkateswarlu, B. (2009). Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biology and Fertility of Soils, 46, 17–26.

    Article  CAS  Google Scholar 

  • Santi, C., Bogusz, D., & Franche, C. (2013). Biological nitrogen fixation in non-legume plants. Annals of Botany, 111(5), 743–767.

    Article  CAS  Google Scholar 

  • Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99.

    Article  CAS  Google Scholar 

  • Saraf, M., Pandya, U., & Thakkar, A. (2014). Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiological Research, 169(1), 18–29.

    Article  CAS  Google Scholar 

  • Sarr, P. S., Fujimoto, S., & Yamakawa, T. (2015). Nodulation, nitrogen fixation and growth of rhizobia-inoculated cowpea (Vigna unguiculata L. Walp) in relation with external nitrogen and light intensity. International Journal of Plant Biology & Research, 3(1), 1025.

    Google Scholar 

  • Sathya, A., Vijayabharathi, R., Srinivas, V., & Gopalakrishnan, S. (2016). Plant growth-promoting actinobacteria on chickpea seed mineral density: An upcoming complementary tool for sustainable biofortification strategy. 3 Biotech, 6(2), 1–6.

    Article  Google Scholar 

  • Sathya, A., Vijayabharathi, R., & Gopalakrishnan, S. (2017). Plant growth-promoting actinobacteria: A new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech, 7, 102.

    Article  Google Scholar 

  • Sayyed, R. Z., Badgujar, M. D., Sonawane, H. M., Mhaske, M. M., & Chincholkar, S. B. (2005). Production of microbial iron chelators (siderophores) by fluorescent Pseudomonads. Indian Journal of Biotechnology, 4(4), 484–490.

    CAS  Google Scholar 

  • Sayyed, R. Z., Patil, A. S., Gangurde, N. S., Bhamare, H. M., SA, J., & Fulpagare, U. G. (2008). Siderophore producing A. faecalis: A potent biofungicide for the control of ground phytopathogens. Research Journal of Biotechnology, 411–413.

    Google Scholar 

  • Schallmey, M., Singh, A., & Ward, O. P. (2004). Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 50, 1–17.

    Article  CAS  Google Scholar 

  • Schoebitz, M., Osman, J., & Ciampi, L. (2013). Effect of immobilized Serratia sp. by spray-drying technology on plant growth and phosphate uptake. Chilean Journal of Agricultural & Animal Sciences, 29, 111–119.

    Google Scholar 

  • Schulz, B., & Boyle, C. (2006). What are endophytes? In B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (Eds.), Microbial root endophytes (pp. 1–13). Berlin: Springer.

    Chapter  Google Scholar 

  • Schwachtje, J., Karojet, S., Kunz, S., Brouwer, S., & Van Dongen, J. T. (2012). Plant-growth promoting effect of newly isolated rhizobacteria varies between two Arabidopsis ecotypes. Plant Signaling & Behavior, 7(6), 623–627.

    Article  CAS  Google Scholar 

  • Sellstedt, A., & Richau, K. H. (2013). Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic Frankia. FEMS Microbiology Letters, 342, 179–186.

    Article  CAS  Google Scholar 

  • Selvakumar, G., Bindu, G. H., Bhatt, R. M., Upreti, K. K., Paul, A. M., Asha, A., Shweta, K., & Sharma, M. (2016). Osmotolerant cytokinin producing microbes enhance tomato growth in deficit irrigation conditions. In Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences.

    Article  CAS  Google Scholar 

  • Seshadre, S., Muthukumarasamy, R., Lakshminarasimhan, C., & Ignaacimuthu, S. (2002). Solubilization of inorganic phosphates by Azospirillum halopraeferans. Current Science, 79(5), 565–567.

    Google Scholar 

  • Shafi, J., Tian, H., & Ji, M. (2017). Bacillus species as versatile weapons for plant pathogens: A review. Biotechnology and Biotechnological Equipment, 31, 1–14.

    Article  CAS  Google Scholar 

  • Shahid, M., Hameed, S., Imran, A., Ali, S., & Van Elsas, J. D. (2012). Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11. World Journal of Microbiology and Biotechnology, 28, 2749–2758.

    Article  CAS  Google Scholar 

  • Shahid, I., Malik, K. A., & Mehnaz, S. (2018). A decade of understanding secondary metabolism in Pseudomonas spp. for sustainable agriculture and pharmaceutical applications. Environmental Sustainability, 1(1), 3–17.

    Article  Google Scholar 

  • Shaikh, S., & Saraf, M. (2017). Zinc biofortification: Strategy to conquer zinc malnutrition through zinc solubilizing PGPR’s. Biomedical Journal of Scientific & Technical Research, 1(1).

    Google Scholar 

  • Shakeel, M., Rais, A., Hassan, M. N., & Hafeez, F. Y. (2015). Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Frontiers in Microbiology, 6, 1286.

    Article  Google Scholar 

  • Shamseldin, A., Abdelkhalek, A., & Sadowsky, M. J. (2017). Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: A review. Symbiosis, 71, 91–109.

    Article  Google Scholar 

  • Shanware, A. S., Kalkar, S. A., & Trivedi, M. M. (2014). Potassium solubilisers: Occurrence, mechanism and their role as competent biofertilizers. International Journal of Current Microbiology and Applied Sciences, 3, 622–629.

    Google Scholar 

  • Shariatmadari, Z., Riahi, H., Seyed Hashtroudi, M., Ghassempour, A., & Aghashariatmadary, Z. (2013). Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Science & Plant Nutrition, 59(4), 535–547.

    Article  CAS  Google Scholar 

  • Sharifi, P. (2017). The effect of plant growth promoting rhizobacteria (PGPR), salicylic acid and drought stress on growth indices, the chlorophyll and essential oil of hyssop (Hyssopus officinalis). Biosciences, Biotechnology Research Asia, 14(3).

    Article  Google Scholar 

  • Sharma, A., Shankhdar, D., & Shankhdhar, S. C. (2013). Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant, Soil and Environment, 59, 89–94.

    Article  CAS  Google Scholar 

  • Siddiqui, Z. A. (2006). PGPR: Prospective biocontrol agents of plant pathogens. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 111–142). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Singh, P. P., Shin, Y. C., Park, C. S., & Chung, Y. R. (1999). Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology, 89, 92–99.

    Article  CAS  Google Scholar 

  • Sivasakthi, S., Usharani, G., & Saranraj, P. (2014). Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. African Journal of Agricultural Research, 9, 1265–1277.

    Google Scholar 

  • Someya, N., Tsuchiya, K., Yoshida, T., Noguchi, M. T., Akutsu, K., & Sawada, H. (2007). Co-inoculation of an antibiotic-producing bacterium and a lytic enzyme-producing bacterium for the biocontrol of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. Biocontrol Science, 12, 1–6.

    Article  CAS  Google Scholar 

  • Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4), 1438.

    Article  CAS  Google Scholar 

  • Spaepen, S., Das, F., Luyten, E., Michiels, J., & Vanderleyden, J. (2009). Indole-3-acetic acid- regulated genes in Rhizobium etli CNPAF512. FEMS Microbiology Letters, 291, 195–200.

    Article  CAS  Google Scholar 

  • Steenhoudt, O., & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetics, biochemical and ecological aspects. FEMS Microbiology Reviews, 24, 487–506.

    Article  CAS  Google Scholar 

  • Suman, A., Yadav, A. N., & Verma, P. (2016). Endophytic microbes in crops: Diversity and beneficial impact for sustainable agriculture. In D. P. Singh, P. C. Abhilash, & P. Ratna (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 117–143). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Sunithakumari, K., Devi, S. N. P., & Vasandha, S. (2016). Zinc solubilizing bacterial isolates from the agricultural fields of Coimbatore, Tamil Nadu, India. Current Science, 110, 196–205.

    Article  CAS  Google Scholar 

  • Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8, 171.

    Article  Google Scholar 

  • Tailor, J. A., & Joshi, B. H. (2014). Harnessing plant growth promoting rhizobacteria beyond nature: A review. Journal of Plant Nutrition, 37, 1534–1571.

    Article  CAS  Google Scholar 

  • Tak, A., Gehlot, P., Pathak, R., & Singh, S. K. (2017). Species diversity of rhizobia. In A. Hansen, D. Choudhary, P. Agrawal, & A. Varma (Eds.), Rhizobium biology and biotechnology. Soil biology (pp. 215–245). Cham: Springer.

    Chapter  Google Scholar 

  • Tang, J. C., Wang, R. G., Niu, X. W., Wang, M., Chu, H. R., & Zhou, Q. X. (2010). Characterisation of the rhizoremediation of petroleum-contaminated soil: Effect of different influencing factors. Biogeosciences, 7(12), 3961–3969.

    Article  CAS  Google Scholar 

  • Tewari, S., & Arora, N. K. (2013). Plant growth promoting rhizobacteria for ameliorating abiotic stresses triggered due to climatic variability. Climate Change Environ Sustain, 1(2), 95–103.

    Article  Google Scholar 

  • Tewari, S., & Arora, N. K. (2014). Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under stress conditions. Current Microbiology, 69, 484–494.

    Article  CAS  Google Scholar 

  • Tewari, S., & Arora, N. K. (2015). Plant growth promoting fluorescent pseudomonads enhancing growth of sunflower crop. International Journal of Science and Technology, 1(1), 51–53.

    Google Scholar 

  • Tewari, S., & Arora, N. K. (2016). Soybean production under flooding stress and its mitigation using plant growth-promoting microbes. In M. Miransari (Ed.), Environmental stresses in soybean production (pp. 23–40). New York: Academic/Elsevier.

    Chapter  Google Scholar 

  • Tewari, S., & Arora, N. K. (2018). Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environmental Sustainability, 1(1), 49–59.

    Article  Google Scholar 

  • Thakore, Y. (2006). The biopesticide market for global agricultural use. Industrial Biotechnology, 2, 192–208.

    Article  Google Scholar 

  • Tilak, K. V. B. R., Ranganayaki, N., Pal, K. K., De, R., Saxena, A. K., Nautiyal, C. S., Mittal, S., Tripathi, A. K., & Johri, B. N. (2005). Diversity of plant growth and soil health supporting bacteria. Current Science, 89, 136–150.

    CAS  Google Scholar 

  • Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 49.

    Article  Google Scholar 

  • Transparency Market Research. (2017). Biofertilizers market (Nitrogen fixing, phosphate solubilizing and others) for seed treatment and soil treatment applications – Global industry analysis, size, share, growth, trends and forecast, 2013–2019. Available at: https://www.transparencymarketresearch.com/pressrelease/globalbiofertilizersmarket.htm.

  • Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21, 214–222.

    Article  CAS  Google Scholar 

  • Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moënne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dyé, F., & Prigent-Combaret, C. (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 4, 356.

    Article  Google Scholar 

  • Vaid, S., Kumar, B., Sharma, A., Shukla, A., & Srivastava, P. (2014). Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. Journal of Soil Science and Plant Nutrition, 14, 889–910.

    Google Scholar 

  • Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–354.

    Article  CAS  Google Scholar 

  • Van Loon, L. C., Bakker, P. A., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  Google Scholar 

  • Vandenberghe, L. P. S., Garcia, L. M. B., Rodrigues, C., Camara, M. C., Pereira, G. V. M., Oliveira, J., & Soccol, C. R. (2017). Potential applications of plant probiotic microorganisms in agriculture and forestry. AIMS Microbiology, 3(3), 629–648.

    Article  Google Scholar 

  • Vargas, R., Detto, M., Baldocchi, D. D., & Allen, M. F. (2010). Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Global Change Biology, 16(5), 1589–1605.

    Article  Google Scholar 

  • Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Boyce, A. N. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability –A review. Molecules, 21(5), 573.

    Article  CAS  Google Scholar 

  • Verma, V. C., Singh, S. K., & Prakash, S. (2011). Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. Journal of Basic Microbiology, 51(5), 550–556.

    Article  CAS  Google Scholar 

  • Verma, P., Yadav, A. N., Kazy, S. K., Saxena, A. K., & Suman, A. (2013). Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. National Journal of Life Sciences, 10(2), 219–226.

    CAS  Google Scholar 

  • Vessey, J. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    Article  CAS  Google Scholar 

  • Vidhyasekaran, P. (2015). Auxin signaling system in plant innate immunity. In P. Vidhyasekaran (Ed.), Plant hormone signaling systems in plant innate immunity, signaling and communication in plants (pp. 311–357). Dordrecht: Springer.

    Google Scholar 

  • Vijayabharathi, R., Sathya, A., & Gopalakrishnan, S. (2016). A renaissance in plant growth-promoting and biocontrol agents by endophytes. In D. P. Singh, H. B. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity (pp. 37–61). New Delhi: Springer.

    Chapter  Google Scholar 

  • Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & Ali, S. Z. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24.

    Article  Google Scholar 

  • Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14.

    Article  CAS  Google Scholar 

  • Wang, J., Zhou, C., Xiao, X., Xie, Y., Zhu, L., & Ma, Z. (2017). Enhanced iron and selenium uptake in plants by volatile emissions of Bacillus amyloliquefaciens (BF06). Applied Sciences, 7(1), 85.

    Article  CAS  Google Scholar 

  • Wani, P. A., & Khan, M. S. (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology, 48, 3262–3267.

    Article  CAS  Google Scholar 

  • Wani, P. A., Khan, M. S., & Zaidi, A. (2007). Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil. Archives of Environmental Contamination and Toxicology, 55, 33–42.

    Article  CAS  Google Scholar 

  • WDR. (2003). World disaster report: Focus on ethics in aid (p. 240). Geneva: International Federation of Red Cross and Red Crescent Societies.

    Google Scholar 

  • Weller, D. M., & Thomashow, L. S. (1994). Current challenges in introducing beneficial microorganisms into the rhizosphere. In F. O’Gara, D. N. Dowling, & B. Boesten (Eds.), Molecular ecology of rhizosphere microorganisms biotechnology and the release of GMOs (pp. 1–18). Weinheim: VCH Verlagsgesellschaft.

    Google Scholar 

  • Weller, D. M., Raaijmakers, J. M., Gardner, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 308–348.

    Article  CAS  Google Scholar 

  • Welsh, A. K., Dawson, J. O., Gottfried, G. J., & Hahn, D. (2009). Diversity of Frankia populations in root nodules of geographically isolated Arizona alder trees in central Arizona (United States). Applied and Environmental Microbiology, 75(21), 6913–6918.

    Article  CAS  Google Scholar 

  • Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 321, 385–408.

    Article  CAS  Google Scholar 

  • Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H., & Schmülling, T. (2003). Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 15, 2532–2550.

    Article  CAS  Google Scholar 

  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.

    Article  CAS  Google Scholar 

  • Wilson, H., Epton, H. A. S., & Sigee, D. C. (1992). Biological control of fire blight of Hawthorn with fluorescent Pseudomonas spp. under protected conditions. Journal of Phytopathology, 136, 16–26.

    Article  Google Scholar 

  • Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma, 125, 155–166.

    Article  Google Scholar 

  • Yadav, A. N., Sachan, S. G., Verma, P., & Saxena, A. K. (2016). Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian Journal of Experimental Biology, 54(2), 142–150.

    Google Scholar 

  • Yadav, A. N., Verma, P., Kumar, V., Sachan, S. G., & Saxena, A. K. (2017). Extreme cold environments: A suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Advances in Biotechnology and Microbiology, 2, 1–4.

    Article  Google Scholar 

  • Yadegari, M., Asadi Rahmani, H., Noormohammadi, G., & Ayneband, A. (2010). Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. Journal of Plant Nutrition, 33(12), 1733–1743.

    Article  CAS  Google Scholar 

  • Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(1), 1–4.

    Article  CAS  Google Scholar 

  • Yu, X., Ai, C., Xin, L., & Zhou, G. (2011). The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47, 138–145.

    Article  Google Scholar 

  • Zahir, Z. A., Arshad, M., & Frankenberger, W. T. (2004). Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81, 97–168.

    Article  CAS  Google Scholar 

  • Zaidi, A., Khan, M. S., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56, 263–284.

    Article  CAS  Google Scholar 

  • Zhan, J., & Sun, Q. (2012). Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiological Research, 167(3), 157–165.

    Article  CAS  Google Scholar 

  • Zhang, S., Moyne, A. L., Reddy, M. S., & Kloepper, J. W. (2002). The role of salicylic acid in induced systemic resistance elicited by plant growth promoting rhizobacteria against blue mould of tobacco. Biological Control, 25, 288–296.

    Article  Google Scholar 

  • Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 33(3), 406–413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, M., Mishra, J., Arora, N.K. (2019). Plant Growth-Promoting Rhizobacteria: Diversity and Applications. In: Sobti, R., Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-7284-0_6

Download citation

Publish with us

Policies and ethics