Skip to main content

Scope of Nanoparticles in Environmental Toxicant Remediation

  • Chapter
  • First Online:
Environmental Biotechnology: For Sustainable Future

Abstract

The requirement and need of novel techniques to speed up the sanitization of polluted and adulterated sites and reduction in the expenses of these methods is a growing concern. The application of nanoparticles, predominantly the iron nanoparticles, as a pioneering and inventive technique to decontaminate the adulterated sites has received attention and consideration in recent times. Though, all over the world, many research studies have been carried on nanoparticles, diminutive level of knowledge is realized about their performance, actions, and conduct in the soil and in aquatic habitats, their adsorption on soil mineral particles, and communication with soil microbes.

Industrial sectors, which are involved in the manufacturing of display, optical and photonic products, semiconductors, memory and storage devices, nano-biotechnology equipment (energy aspects), and health care goods, generate most of the products that contain nanoparticles. On the other hand, nanotechnology is a technique which has been employed as an environmental know-how to guard the nature through prevention, handling, curing, and cleanup of pollution. In this chapter, we have focused on the environmental toxicant cleanup and discuss a background and overview of the existing practices related to the remediation. The research findings; social issues; probable environmental, human health, and safety repercussions; and future thoughts for remediation using nanotechnology are also discussed. Here, we also discuss nanoscale zerovalent iron in some detail. The technique of nanoremediation has the capacity to lessen the total costs of decontamination at the bigger polluted sites. Moreover, the purpose of this technique is also to reduce the cleanup duration, eradicate the treatment requirement and dumping of the contaminated soil, and also lessen contaminant amount to almost zero. Further, we believe that suitable evaluation of nanoremediation approaches, especially the large-scale environmental studies, also need to be addressed to avoid and counteract any probable hostile environmental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addleman, R. S., Egorov, O. B., O’Hara, M., Zemaninan, T. S., Fryxell, G., & Kuenzi, D. (2005). Nanostructured sorbents for solid phase microextraction and environmental assay. In B. Karn, T. Masciangioli, W. Zhang, V. Colvin, & P. Alivisatos (Eds.), Nanotechnology and the environment: Applications and implications (pp. 186–199). Washington, DC: Oxford University Press.

    Google Scholar 

  • Agnihotri, S., Rood, M. J., & Rostam-Abadi, M. (2005). Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. Carbon, 43, 2379–2388.

    Article  CAS  Google Scholar 

  • Bardos, P., Bone, B., Daly, P., Elliott, D., Jones, S., Lowry, G., & Merly, C. (2014). A risk/benefit appraisal for the application of nano-scale Zero Valent Iron (nZVI) for the remediation of contaminated sites. WP9 NanoRem. www.nanorem.eu

  • Bochra, B. K., Latifa, L. E. A., Hafedh, K., & Abdelhamid, G. (2011). TiO2 nanotubes as solid-phase extraction adsorbent for the determination of polycyclic aromatic hydrocarbons in environmental water samples. Journal of Environmental Sciences, 23(5), 860–867.

    Article  Google Scholar 

  • Bull, R. J., Brinbaum, L. S., Cantor, K. P., Rose, J. B., Butterworth, B. E., Pegram, R., & Tuomisto, J. (1995). Water chlorination: Essential process and cancer hazard. Fundamental and Applied Toxicology, 28(1), 155–166.

    Article  CAS  Google Scholar 

  • Das, D., Suresh Kumar, M. K., Koley, S., Mithal, N., & Pillai, C. G. S. (2010). Sorption of uranium on magnetite nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 285, 447–454.

    Article  CAS  Google Scholar 

  • Dhasmana, A., Jamal, M. Q. S., Mir, S. S., Bhatt, M. L. B., Rahman, Q., Gupta, R., Siddiqui, M. H., & Lohani, M. (2014). Titanium dioxide nanoparticles as guardian against environmental carcinogen Benzo [alpha] Pyrene. PLoS One, 9(9), e107068.

    Article  Google Scholar 

  • Dhasmana, A., Mohd, Q., Jamal, S., Gupta, R., Siddiqui, M. H., Kesari, K. K., Wadhwa, G., Khan, S., Lohani, M. (2015). Titanium dioxide nanoparticles provide protection against polycyclic aromatic hydrocarbon BaP & Chrysene induced perturbation of DNA repair machinery: A Computational Biol Approach. Biotechnology and Applied Biochemistry (pp. 187–199). Wiley Publication.

    Google Scholar 

  • Dickinson, M., & Scott, T. B. (2011). The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. Journal of Nanoparticle Research, 13, 3699–3711.

    Article  CAS  Google Scholar 

  • Engates, K. E., & Shipley, H. J. (2011). Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and exhaustion. Environmental Science and Pollution Research, 18, 386–395.

    Article  CAS  Google Scholar 

  • Ghorbani, H. R., Safekordi, A. A., Attar, H., & Rezayat Sorkhabadi, S. M. (2011). Biological and non-biological methods for silver nanoparticles synthesis. Chemical and Biochemical Engineering Quarterly, 25, 317–326.

    CAS  Google Scholar 

  • Grünwald, A., Št’astný, B., Slavíčková, K., & Slavíček, M. (2002). Formation of halo forms during chlorination of natural waters. Acta Polytechnica, 42(2), 56–59.

    Google Scholar 

  • Iijima, S., & Ichihashi, T. (1993). Single shell carbon nanotube of diameter 1 nm. Nature, 363, 603–605.

    Article  CAS  Google Scholar 

  • Karn, B., Todd, K., & Martha, O. (2009). Nanotechnology and in situ remediation: A review of the benefits and potential risks. Environmental Health Perspectives, 117(12), 1823–1831.

    Article  Google Scholar 

  • Karnchanasest, B., & Santisukkasaem, O. (2007). A preliminary study for removing Phenanthrene & Benzo(a)Pyrene from soil by nanoparticles. Journal of Applied Sciences, 7(21), 3317–3321.

    Article  CAS  Google Scholar 

  • Khan, I., Farhan, M., Singh, P., & Thiagarajan, P. (2014). Nanotechnology for environmental remediation. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(3), 1916–1927.

    Google Scholar 

  • Kumar, S. R., & Gopinath, P. (2016). Nano-bioremediation, applications of nanotechnology for bioremediation. In L. K. Wang, M. H. S. Wang, Y. T. Hung, N. K. Shammas, & J. P. Chen (Eds.), Remediation of heavy metals in the environment (pp. 46–58). Boca Raton: Taylor & Francis.

    Google Scholar 

  • Li, Y. H., Dinga, J., Luanb, Z., Dia, Z., Zhua, Y., Xua, C., Wu, D., & Wei, B. (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41(14), 2787–2792.

    Article  CAS  Google Scholar 

  • Li, X. Q., Elliott, D. W., & Zhang, W. (2006). Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 31, 111–122.

    Article  CAS  Google Scholar 

  • Liang, P., Liu, Y., Guo, L., Zeng, J., & Pei, H. L. (2004). Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the pre concentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 19, 1489–1492.

    Article  CAS  Google Scholar 

  • Long, R. Q., & Yang, R. T. (2001). Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society, 123(9), 2058–2059.

    Article  CAS  Google Scholar 

  • Lowry, G. V. (2007). Nanomaterials for groundwater remediation. In M. R. Wiesner & J. Bottero (Eds.), Environmental nanotechnology (pp. 297–336). New York: The McGraw-Hill Companies.

    Google Scholar 

  • Mueller, N. C., Jürgen, B., Johannes, B., Miroslav, Č., Rissing, P., Rickerby, D., & Nowack, B. (2012). Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environmental Science and Pollution Research, 19(2), 550–558.

    Article  CAS  Google Scholar 

  • OPERATIONAL PROGRAMME ENVIRONMENT, Ministry of Environmental and Nature Protection, Republic of Croatia. 2007–2013.

    Google Scholar 

  • Otto, M., Floyd, M., & Bajpai, S. (2008). Nanotechnology for site remediation. Remediation, 19(1), 99–108.

    Article  Google Scholar 

  • Pandey, B., & Fulekar, M. H. (2012). Nanotechnology: Remediation technologies to clean up the environmental pollutants. Research Journal of Chemical Sciences, 2(2), 90–96.

    CAS  Google Scholar 

  • Patil, S. S., Shedbalkar, S. U., Truskewycz, A., Chopade, B. A., & Ball, A. S. (2016). Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environmental Technology & Innovation, 5, 10–21.

    Article  Google Scholar 

  • Peng, X., Luan, Z., Ding, J., Di, Z., Li, Y., & Tian, B. (2005). Ceria nanoparticles supported nanotubes for removal of arsenate in water. Materials Letters, 59, 399–403.

    Article  CAS  Google Scholar 

  • Prashant, M., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: Technological concepts and future applications. Journal of Nanoparticle Research, 10, 507–517.

    Article  Google Scholar 

  • Qixin, D., Chaozhang, H., Wei, X., Jianping, Z., & Yiqiang, Z. (2011). Significant reduction of harmful compounds in tobacco smoke by the use of titanate nanosheets and nanotubes. Chemical Communications, 47, 6153–6155.

    Article  Google Scholar 

  • Rajan, C. S. (2011). Nanotechnology in groundwater remediation. International Journal of Environmental Science and Technology, 2(3), 47–53.

    Google Scholar 

  • Rao, G. P., Lu, C., & Su, F. (2007). Sorption of divalent heavy metal ions from aqueous solutions by carbon nanotubes: A review. Purification Technology, 58(1), 224–231.

    Article  CAS  Google Scholar 

  • Rickerby, D. G., & Morrison, M. (2007). Nanotechnology and the environment: A European perspective. Science and Technology of Advanced Materials, 8, 19–24.

    Article  CAS  Google Scholar 

  • Saleh, N., Sirk, K., Liu, Y., & Phenrat, T. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24(1), 45–57.

    Article  CAS  Google Scholar 

  • Savage, N., & Diallo, M. S. (2005). Nanomaterials and water purification: Opportunities and challenges. Journal of Nanoparticle Research, 7, 331–342.

    Article  CAS  Google Scholar 

  • Silbernage, R., Díaz, A., Steffensmeier, E., Clearfield, A., & Blüme, J. (2014). Wilkinson-type hydrogenation catalysts immobilized on zirconium phosphate nanoplatelets. Journal of Molecular Catalysis A: Chemical, 394(15), 217–223.

    Article  Google Scholar 

  • Singh, R., Misra, V., & Singh, R. P. (2011). Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. Journal of Nanoparticle Research, 13, 4063–4073.

    Article  CAS  Google Scholar 

  • Smart, S. K., Cassidy, A. I., Lu, G. Q., & Martin, D. J. (2006). The biocompatibility of carbon nanotubes. Carbon, 44(6), 1034–1047.

    Article  CAS  Google Scholar 

  • Tao, H., Hao, S., Chang, F., Wang, L., Zhang, Y., Cai, X., & Zeng, J. S. D. (2011). Photodegradation of bisphenol a by Titana nanoparticles in mesoporous MCM-41. Water, Air, & Soil Pollution, 214, 491–498.

    Article  CAS  Google Scholar 

  • Theron, J. J. A., Walker, T. E., & Cloete, T. E. (2008). Nanotechnology and water treatment: Applications and emerging opportunities. Critical Reviews in Microbiology, 34(1), 43–69.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nanotoday, 1(2), 44–48.

    Article  Google Scholar 

  • Tsai, C. Y., His, H. C., Bai, H., Fan, K. S., & Chen, C. (2011). TiO2-x nanoparticles synthesized using he/ar. Thermal plasma and their effectiveness on low-. Concentration mercury vapor removal. Journal of Nanoparticle Research, 13, 4739–4748.

    Article  CAS  Google Scholar 

  • Turkevich, J., Stevenson, P. C., & Hillier, J. (1953). The formation of colloidal gold. The Journal of Physical Chemistry, 57, 670–673.

    Article  CAS  Google Scholar 

  • US EPA. (2004). https://nepis.epa.gov/Exe/ZyNET.exe/

  • US EPA. (2008). https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=190806

  • US EPA. (2014). Remediation: Selected sites using or testing nanoparticles for remediation.

    Google Scholar 

  • Varma, R., & Nadagouda, M. N. (2009). Risk reduction vie greener synthesis of noble metal nanostructures and nano composites. Environmental Security, 3, 209–217.

    Google Scholar 

  • Xie, Y., Wang, B., Li, F., Ma, L., Ni, M., & Shen, W. (2014). Molecular mechanisms of reduced nerve toxicity by titanium dioxide nanoparticles in the phoxim-exposed brain of Bombyx mori. PLoS One, 9(6), e101062.

    Article  Google Scholar 

  • Xin, R. Z., Ping, Y., & Meng, Y. Z. (2001). Research on photocatalytic degradation of organophosphorus pesticides using TiO2.SiO2/beads. Industrial Water Treatment, 21(3), 13–39.

    Google Scholar 

  • Zhang, L., Chang, X., Hu, Z., Zhang, L., Shi, J., & Gao, R. (2010). Selective solid phase extraction and preconcentration of mercury(II) from environmental and biological samples using nanometer silica functionalized by 2,6-pyridine dicarboxylic acid. Microchimica Acta, 168, 79–85.

    Article  CAS  Google Scholar 

  • Zhang, Q., Pan, B., Zhang, S., Wang, J., Zhang, W., & Lv, L. (2011). New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. Journal of Nanoparticle Research, 13, 5355–5364.

    Article  CAS  Google Scholar 

  • Zhu, X., Zhou, D., Wang, Y., Cang, L., Fang, G., & Fan, J. (2012). Remediation of polychlorinated biphenyl-contaminated soil by soil washing and subsequent TiO2 photocatalytic degradation. Journal of Soils and Sediments, 12, 1371–1379.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Dhasmana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhasmana, A. et al. (2019). Scope of Nanoparticles in Environmental Toxicant Remediation. In: Sobti, R., Arora, N., Kothari, R. (eds) Environmental Biotechnology: For Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-7284-0_2

Download citation

Publish with us

Policies and ethics