Skip to main content

Epigenetics and Uterine Fibroids

  • Chapter
  • First Online:
  • 775 Accesses

Part of the book series: Comprehensive Gynecology and Obstetrics ((CGO))

Abstract

The pathogenesis of uterine fibroids, the most common benign tumor in women, remains unclear. Environmental factors such as obesity, hypertension, and early menarche place women at greater risk for uterine fibroids. Epigenetic processes such as DNA methylation, histone modification, and microRNA expression play key roles in regulating gene expression and have been shown to be affected by environmental and other factors. Thus, uterine fibroids may be associated with epigenetic abnormalities caused by unfavorable environmental factors.

Several reports have investigated the epigenetic profiles of uterine fibroid and normal myometrium. The profiles of DNA methylation in the myometrium with and without fibroids were quite similar while those in fibroids were distinct. In uterine fibroids, the biological relevance of the aberrantly methylated and expressed genes was cancer process. Some of these genes include IRS1, which is related to tumor transformation, and others such as GSTM5, KLF11, DLEC1, and KRT19, which have tumor-suppressive roles. Some microRNAs including miR-21, mir-200, and let-7 were found to be dysregulated in uterine fibroids and associated with the growth and the accumulation of extracellular matrix of uterine fibroids via aberrant expression of the target genes. Many estrogen receptor (ER) alpha-target genes, which were associated with apoptosis and collagen production, had aberrant DNA methylation in the promoter, which contributes to an abnormal response to estrogen. Moreover, some recent reports have demonstrated that several microRNAs which are dysregulated in uterine fibroids aberrantly mediate the actions of estrogen and progesterone.

Epigenetic abnormalities and their related transcriptional aberration have been associated with tumorigenic or tumor-suppressive roles, which may trigger the transformation of a single cell into a tumor stem cell that will eventually develop into a monoclonal uterine fibroid tumor. After menarche, the epigenetically dysregulated responses to estrogen and progesterone contribute to the growth of uterine fibroids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wise LA, Laughlin-Tommaso SK. Epidemiology of uterine fibroids: from menarche to menopause. Clin Obstet Gynecol. 2016;59(1):2–24. https://doi.org/10.1097/GRF.0000000000000164.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tamura H, Kishi H, Kitade M, Asai-Sato M, Tanaka A, Murakami T, et al. Clinical outcomes of infertility treatment for women with adenomyosis in Japan. Reprod Med Biol. 2017;16(3):276–82. https://doi.org/10.1002/rmb2.12036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Laughlin SK, Schroeder JC, Baird DD. New directions in the epidemiology of uterine fibroids. Semin Reprod Med. 2010;28(3):204–17. https://doi.org/10.1055/s-0030-1251477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Reis FM, Bloise E, Ortiga-Carvalho TM. Hormones and pathogenesis of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2016;34:13–24. https://doi.org/10.1016/j.bpobgyn.2015.11.015.

    Article  PubMed  Google Scholar 

  5. Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med. 2017;49(4):e322. https://doi.org/10.1038/emm.2017.10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Alinovi R, Goldoni M, Pinelli S, Ravanetti F, Galetti M, Pelosi G, et al. Titanium dioxide aggregating nanoparticles induce autophagy and under-expression of microRNA 21 and 30a in A549 cell line: a comparative study with cobalt(II, III) oxide nanoparticles. Toxicol In Vitro. 2017;42:76–85. https://doi.org/10.1016/j.tiv.2017.04.007.

    Article  PubMed  CAS  Google Scholar 

  7. Priya ES, Kumar TS, Singh PR, Balakrishnan S, Arunakaran J. Impact of lactational exposure to polychlorinated biphenyl causes epigenetic modification and impairs Sertoli cells functional regulators in F1 progeny. Reprod Sci. 2017:1933719117699707. https://doi.org/10.1177/1933719117699707.

  8. Sadakierska-Chudy A, Frankowska M, Jastrzebska J, Wydra K, Miszkiel J, Sanak M, et al. Cocaine administration and its withdrawal enhance the expression of genes encoding histone-modifying enzymes and histone acetylation in the rat prefrontal cortex. Neurotox Res. 2017;32(1):141–50. https://doi.org/10.1007/s12640-017-9728-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Walker CL. Epigenomic reprogramming of the developing reproductive tract and disease susceptibility in adulthood. Birth Defects Res A Clin Mol Teratol. 2011;91(8):666–71. https://doi.org/10.1002/bdra.20827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Auclair G, Weber M. Mechanisms of DNA methylation and demethylation in mammals. Biochimie. 2012;94(11):2202–11. https://doi.org/10.1016/j.biochi.2012.05.016.

    Article  PubMed  CAS  Google Scholar 

  11. Dogan N, Wu W, Morrissey CS, Chen KB, Stonestrom A, Long M, et al. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility. Epigenetics Chromatin. 2015;8:16. https://doi.org/10.1186/s13072-015-0009-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95. https://doi.org/10.1038/cr.2011.22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mai A, Cheng D, Bedford MT, Valente S, Nebbioso A, Perrone A, et al. Epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (sirtuin) inhibitors. J Med Chem. 2008;51(7):2279–90. https://doi.org/10.1021/jm701595q.

    Article  PubMed  CAS  Google Scholar 

  14. Maekawa R, Yagi S, Ohgane J, Yamagata Y, Asada H, Tamura I, et al. Disease-dependent differently methylated regions (D-DMRs) of DNA are enriched on the X chromosome in uterine leiomyoma. J Reprod Dev. 2011;57(5):604–12. https://doi.org/10.1262/jrd.11-035A.

    Article  PubMed  CAS  Google Scholar 

  15. Wei LH, Torng PL, Hsiao SM, Jeng YM, Chen MW, Chen CA. Histone deacetylase 6 regulates estrogen receptor alpha in uterine leiomyoma. Reprod Sci. 2011;18(8):755–62. https://doi.org/10.1177/1933719111398147.

    Article  PubMed  CAS  Google Scholar 

  16. Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014;15(1):1–19. https://doi.org/10.1093/bib/bbs075.

    Article  PubMed  CAS  Google Scholar 

  17. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152(6):1298–307. https://doi.org/10.1016/j.cell.2013.02.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Deng Q, Becker L, Ma X, Zhong X, Young K, Ramos K, et al. The dichotomy of p53 regulation by noncoding RNAs. J Mol Cell Biol. 2014;6(3):198–205. https://doi.org/10.1093/jmcb/mju017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhang J, Zhang P, Wang L, Piao HL, Ma L. Long non-coding RNA HOTAIR in carcinogenesis and metastasis. Acta Biochim Biophys Sin Shanghai. 2014;46(1):1–5. https://doi.org/10.1093/abbs/gmt117.

    Article  PubMed  CAS  Google Scholar 

  20. Li S, Chiang TC, Richard-Davis G, Barrett JC, McLachlan JA. DNA hypomethylation and imbalanced expression of DNA methyltransferases (DNMT1, 3A, and 3B) in human uterine leiomyoma. Gynecol Oncol. 2003;90(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  21. Yamagata Y, Maekawa R, Asada H, Taketani T, Tamura I, Tamura H, et al. Aberrant DNA methylation status in human uterine leiomyoma. Mol Hum Reprod. 2009;15(4):259–67. https://doi.org/10.1093/molehr/gap010.

    Article  PubMed  CAS  Google Scholar 

  22. Maekawa R, Sato S, Yamagata Y, Asada H, Tamura I, Lee L, et al. Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas. PLoS One. 2013;8(6):e66632. https://doi.org/10.1371/journal.pone.0066632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ono M, Maruyama T, Masuda H, Kajitani T, Nagashima T, Arase T, et al. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A. 2007;104(47):18700–5. https://doi.org/10.1073/pnas.0704472104.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ono M, Qiang W, Serna VA, Yin P, Coon JS V, Navarro A, et al. Role of stem cells in human uterine leiomyoma growth. PLoS One. 2012;7(5):e36935. https://doi.org/10.1371/journal.pone.0036935PONE-D-12-03746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Commandeur AE, Styer AK, Teixeira JM. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth. Hum Reprod Update. 2015;21(5):593–615. https://doi.org/10.1093/humupd/dmv030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sato S, Maekawa R, Yamagata Y, Tamura I, Lee L, Okada M, et al. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application. Sci Rep. 2016;6:30652. https://doi.org/10.1038/srep30652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Navarro A, Yin P, Monsivais D, Lin SM, Du P, Wei JJ, et al. Genome-wide DNA methylation indicates silencing of tumor suppressor genes in uterine leiomyoma. PLoS One. 2012;7(3):e33284. https://doi.org/10.1371/journal.pone.0033284PONE-D-11-17294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vanharanta S, Wortham NC, Laiho P, Sjoberg J, Aittomaki K, Arola J, et al. 7q deletion mapping and expression profiling in uterine fibroids. Oncogene. 2005;24(43):6545–54. https://doi.org/10.1038/sj.onc.1208784.

    Article  PubMed  CAS  Google Scholar 

  29. Gilden M, Malik M, Britten J, Delgado T, Levy G, Catherino WH. Leiomyoma fibrosis inhibited by liarozole, a retinoic acid metabolic blocking agent. Fertil Steril. 2012;98(6):1557–62. https://doi.org/10.1016/j.fertnstert.2012.07.1132.

    Article  PubMed  CAS  Google Scholar 

  30. Morelli C, Garofalo C, Sisci D, del Rincon S, Cascio S, Tu X, et al. Nuclear insulin receptor substrate 1 interacts with estrogen receptor alpha at ERE promoters. Oncogene. 2004;23(45):7517–26. https://doi.org/10.1038/sj.onc.12080141208014.

    Article  CAS  PubMed  Google Scholar 

  31. Esposito DL, Aru F, Lattanzio R, Morgano A, Abbondanza M, Malekzadeh R, et al. The insulin receptor substrate 1 (IRS1) in intestinal epithelial differentiation and in colorectal cancer. PLoS One. 2012;7(4):e36190. https://doi.org/10.1371/journal.pone.0036190PONE-D-10-04875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peng DF, Razvi M, Chen H, Washington K, Roessner A, Schneider-Stock R, et al. DNA hypermethylation regulates the expression of members of the Mu-class glutathione S-transferases and glutathione peroxidases in Barrett's adenocarcinoma. Gut. 2009;58(1):5–15. https://doi.org/10.1136/gut.2007.146290.

    Article  PubMed  CAS  Google Scholar 

  33. Weakley SM, Wang H, Yao Q, Chen C. Expression and function of a large non-coding RNA gene XIST in human cancer. World J Surg. 2011;35(8):1751–6. https://doi.org/10.1007/s00268-010-0951-0.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sato S, Maekawa R, Yamagata Y, Asada H, Tamura I, Lee L, et al. Potential mechanisms of aberrant DNA hypomethylation on the x chromosome in uterine leiomyomas. J Reprod Dev. 2014;60(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  35. Asada H, Yamagata Y, Taketani T, Matsuoka A, Tamura H, Hattori N, et al. Potential link between estrogen receptor-alpha gene hypomethylation and uterine fibroid formation. Mol Hum Reprod. 2008;14(9):539–45. https://doi.org/10.1093/molehr/gan045.

    Article  PubMed  CAS  Google Scholar 

  36. Maekawa R, Sato S, Okada M, Lee L, Tamura I, Jozaki K, et al. Tissue-specific expression of estrogen receptor 1 is regulated by DNA methylation in a T-DMR. Mol Endocrinol. 2016;30(3):335–47. https://doi.org/10.1210/me.2015-1058.

    Article  PubMed  CAS  Google Scholar 

  37. Claus R, Hackanson B, Poetsch AR, Zucknick M, Sonnet M, Blagitko-Dorfs N, et al. Quantitative analyses of DAPK1 methylation in AML and MDS. Int J Cancer. 2012;131(2):E138–42. https://doi.org/10.1002/ijc.26429.

    Article  PubMed  CAS  Google Scholar 

  38. Missaoui N, Hmissa S, Trabelsi A, Traore C, Mokni M, Dante R, et al. Promoter hypermethylation of CDH13, DAPK1 and TWIST1 genes in precancerous and cancerous lesions of the uterine cervix. Pathol Res Pract. 2011;207(1):37–42. https://doi.org/10.1016/j.prp.2010.11.001.

    Article  PubMed  CAS  Google Scholar 

  39. Gade P, Kimball AS, DiNardo AC, Gangwal P, Ross DD, Boswell HS, et al. Death-associated protein kinase-1 expression and autophagy in chronic lymphocytic leukemia are dependent on activating transcription factor-6 and CCAAT/enhancer-binding protein-beta. J Biol Chem. 2016;291(42):22030–42. https://doi.org/10.1074/jbc.M116.725796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bernard D, Augert A. NUAK1 links genomic instability and senescence. Aging (Albany NY). 2010;2(6):317–9. https://doi.org/10.18632/aging.100153.

    Article  CAS  Google Scholar 

  41. Hou X, Liu JE, Liu W, Liu CY, Liu ZY, Sun ZY. A new role of NUAK1: directly phosphorylating p53 and regulating cell proliferation. Oncogene. 2011;30(26):2933–42. https://doi.org/10.1038/onc.2011.19onc201119.

    Article  CAS  PubMed  Google Scholar 

  42. Zavadil J, Ye H, Liu Z, Wu J, Lee P, Hernando E, et al. Profiling and functional analyses of microRNAs and their target gene products in human uterine leiomyomas. PLoS One. 2010;5(8):e12362. https://doi.org/10.1371/journal.pone.0012362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Georgieva B, Milev I, Minkov I, Dimitrova I, Bradford AP, Baev V. Characterization of the uterine leiomyoma microRNAome by deep sequencing. Genomics. 2012;99(5):275–81. https://doi.org/10.1016/j.ygeno.2012.03.003.

    Article  PubMed  CAS  Google Scholar 

  44. Guo H, Zhang X, Dong R, Liu X, Li Y, Lu S, et al. Integrated analysis of long noncoding RNAs and mRNAs reveals their potential roles in the pathogenesis of uterine leiomyomas. Oncotarget. 2014;5(18):8625–36. https://doi.org/10.18632/oncotarget.2349.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang T, Zhang X, Obijuru L, Laser J, Aris V, Lee P, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007;46(4):336–47. https://doi.org/10.1002/gcc.20415.

    Article  PubMed  CAS  Google Scholar 

  46. Marsh EE, Lin Z, Yin P, Milad M, Chakravarti D, Bulun SE. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril. 2008;89(6):1771–6. https://doi.org/10.1016/j.fertnstert.2007.05.074.

    Article  PubMed  CAS  Google Scholar 

  47. Pan Q, Luo X, Chegini N. Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med. 2008;12(1):227–40. https://doi.org/10.1111/j.1582-4934.2007.00207.x.

    Article  PubMed  CAS  Google Scholar 

  48. Chuang TD, Khorram O. miR-200c regulates IL8 expression by targeting IKBKB: a potential mediator of inflammation in leiomyoma pathogenesis. PLoS One. 2014;9(4):e95370. https://doi.org/10.1371/journal.pone.0095370.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chuang TD, Luo X, Panda H, Chegini N. miR-93/106b and their host gene, MCM7, are differentially expressed in leiomyomas and functionally target F3 and IL-8. Mol Endocrinol. 2012;26(6):1028–42. https://doi.org/10.1210/me.2012-1075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chuang TD, Panda H, Luo X, Chegini N. miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocr Relat Cancer. 2012;19(4):541–56. https://doi.org/10.1530/ERC-12-0007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Qiang W, Liu Z, Serna VA, Druschitz SA, Liu Y, Espona-Fiedler M, et al. Down-regulation of miR-29b is essential for pathogenesis of uterine leiomyoma. Endocrinology. 2014;155(3):663–9. https://doi.org/10.1210/en.2013-1763.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fitzgerald JB, Chennathukuzhi V, Koohestani F, Nowak RA, Christenson LK. Role of microRNA-21 and programmed cell death 4 in the pathogenesis of human uterine leiomyomas. Fertil Steril. 2012;98(3):726–34.e2. https://doi.org/10.1016/j.fertnstert.2012.05.040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Harmalkar M, Upraity S, Kazi S, Shirsat NV. Tamoxifen-induced cell death of malignant glioma cells is brought about by oxidative-stress-mediated alterations in the expression of BCL2 family members and is enhanced on miR-21 inhibition. J Mol Neurosci. 2015;57(2):197–202. https://doi.org/10.1007/s12031-015-0602-x.

    Article  PubMed  CAS  Google Scholar 

  54. Luu HN, Lin HY, Sorensen KD, Ogunwobi OO, Kumar N, Chornokur G, et al. miRNAs associated with prostate cancer risk and progression. BMC Urol. 2017;17(1):18. https://doi.org/10.1186/s12894-017-0206-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Mei LL, Qiu YT, Zhang B, Shi ZZ. MicroRNAs in esophageal squamous cell carcinoma: potential biomarkers and therapeutic targets. Cancer Biomark. 2017;19(1):1–9. https://doi.org/10.3233/CBM-160240.

    Article  PubMed  CAS  Google Scholar 

  56. Peng Q, Zhang X, Min M, Zou L, Shen P, Zhu Y. The clinical role of microRNA-21 as a promising biomarker in the diagnosis and prognosis of colorectal cancer: a systematic review and meta-analysis. Oncotarget. 2017;8(27):44893–909. https://doi.org/10.18632/oncotarget.16488.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sims EK, Lakhter AJ, Anderson-Baucum E, Kono T, Tong X, Evans-Molina C. MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabetologia. 2017;60(6):1057–65. https://doi.org/10.1007/s00125-017-4237-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bertsch E, Qiang W, Zhang Q, Espona-Fiedler M, Druschitz S, Liu Y, et al. MED12 and HMGA2 mutations: two independent genetic events in uterine leiomyoma and leiomyosarcoma. Mod Pathol. 2014;27(8):1144–53. https://doi.org/10.1038/modpathol.2013.243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Peng Y, Laser J, Shi G, Mittal K, Melamed J, Lee P, et al. Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res. 2008;6(4):663–73. https://doi.org/10.1158/1541-7786.MCR-07-0370.

    Article  PubMed  CAS  Google Scholar 

  60. Bendoraite A, Knouf EC, Garg KS, Parkin RK, Kroh EM, O’Briant KC, et al. Regulation of miR-200 family microRNAs and ZEB transcription factors in ovarian cancer: evidence supporting a mesothelial-to-epithelial transition. Gynecol Oncol. 2010;116(1):117–25. https://doi.org/10.1016/j.ygyno.2009.08.009.

    Article  PubMed  CAS  Google Scholar 

  61. Sandberg A. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. Cancer Genet Cytogenet. 2005;158:1–26.

    Article  CAS  PubMed  Google Scholar 

  62. Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010;17(2):215–20. https://doi.org/10.1038/cdd.2009.69.

    Article  PubMed  CAS  Google Scholar 

  63. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66. https://doi.org/10.1146/annurev-biochem-051410-092902.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maekawa, R., Sugino, N. (2018). Epigenetics and Uterine Fibroids. In: Sugino, N. (eds) Uterine Fibroids and Adenomyosis. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7167-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7167-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7166-9

  • Online ISBN: 978-981-10-7167-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics