Skip to main content

Microbial Valorization of Chitinous Bioresources for Chitin Extraction and Production of Chito-Oligomers and N-Acetylglucosamine: Trends, Perspectives and Prospects

  • Chapter
  • First Online:
Microbial Biotechnology

Abstract

Chitin, the crystalline polymer of N-acetylglucosamine (GlcNAc) is the world’s second most abundant carbohydrate and principal structural component of cell wall of fungi, yeasts and algae, insect exoskeletons, shells of crustaceans and the microfilarial sheath of nematodes. GlcNAc is present in peptidoglycan, hyaluronic acid and keratin sulfate. In nature, chitin rich waste biomass get re-utilized by an array of microbes producing chitinases and proteases, but the presence of the microbes as well as activity of the enzymes depend on the abundance of the bioresource. Chitin polymer, chito-oligomers and GlcNAc have engrossed colossal attention due to their innumerable potential applications in food, biomedicine, pharmaceuticals, agriculture, cosmetics and environmental cleanup. Owing their immense and versatile appliances, extraction of chitin and production of chito-oligomers and GlcNAc in large scale is necessary to meet the market demand. In this context, chemical extraction/degradation of crustacean shell at elevated temperature is the traditional practice results in the formation of undesired byproducts, creates large quantities of toxic waste as well as associated with high cost, low yield and also deteriorates environmental health. In this perspective, microbial biotransformation and enzymatic treatment are alternative environment friendly ‘green technology’ for generation of chitin, chito-oligomers and GlcNAc in large scale in economical way by valorizing natural chitinous bioresources using potential organic acid, chitinase and protease producing microbes. Moreover, genetic manipulation and metabolic engineering was implemented in recent ages. Altogether, in the present assignment, cutting edge strategies of bioextraction of chitin and production of chito-oligomers and GlcNAc by microbial means as well as their multifaceted appliances in biological and biomedical sector are thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VG (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araki Y, Ito E (1974) A pathway of chitosan formation in Mucor rouxii: enzymatic deacetylation of chitin. Biochem Biophys Res Commun 56:669–675

    CAS  PubMed  Google Scholar 

  • Arbia W, Arbia A, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods – a review. Food Technol Biotechnol 51(1):12–25

    Google Scholar 

  • Azam MS, Kim EJ, Yang H, Kim JK (2014) High antioxidant and DNA protection activities of N-acetylglucosamine (GlcNAc) and chitobiose produced by exolytic chitinase from Bacillus cereus EW5. Springerplus 3:354. https://doi.org/10.1186/2193-1801-3-354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuma K, Osaki T, Minami S, Okamoto Y (2015) Anticancer and anti-inflammatory properties of chitin and chitosan pligosaccharides. J Funct Biomater 6:33–49. https://doi.org/10.3390/jfb6010033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81(3):463–469

    PubMed  Google Scholar 

  • Berrada M, Serreqi A, Dabbarh F, Owusu A, Gupta A, Lehnert S (2005) A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials 26:2115–2120

    CAS  PubMed  Google Scholar 

  • Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184

    CAS  PubMed  Google Scholar 

  • Bivas-Benita M, van Meijgaarden KE, Franken KLMC, Junginger HE, Borchard G, Ottenhoff THM, Geluk A (2004) Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 22(13–14):1609–1615

    CAS  PubMed  Google Scholar 

  • Bouhenna M, Salah R, Bakour R, Drouiche N, Abdi N, Grib H, Lounici H, Mameri N (2015) Effects of chitin and its derivatives on human cancer cells lines. Environ Sci Pollut Res Int 22(20):15579–15586

    CAS  PubMed  Google Scholar 

  • Boon NA, Aronson JK (1985) Dietary salt and hypertension: treatment and prevention. Br Med J 290:949–950

    CAS  Google Scholar 

  • Burtan AF (1998) N-acetyl glucosamine as a cytoprotective agent. 0145715 B. KR Patent

    Google Scholar 

  • Burtan AF, Freeman HJ (1993) N-acetyl glucosamine as a gastroprotective agent. 9323055. WO Patent

    Google Scholar 

  • Chandrasekaran M (2013) Valorization of food processing by-products. CRC Press, Boca Raton

    Google Scholar 

  • Chang HY, Chen JJ, Fang F, Chen Z (2004) Enhancement of antibody response by chitosan, a novel adjuvant of inactivated influenza vaccine. Chin J Biol 17(6):21–24

    Google Scholar 

  • Chen L, Tian Z, Du Y (2004) Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 25:3725–3732

    CAS  PubMed  Google Scholar 

  • Chen JK, Shen CR, Liu CL (2010) N-Acetylglucosamine: production and applications. Mar Drugs 8(9):2493–2516. https://doi.org/10.3390/md8092493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chitin, Chitosan, Oligosaccharides and Their Derivatives Biological Activities and Applications (2010) Edited by Se-Kwon Kim. CRC Press

    Google Scholar 

  • Cho YI, No HK, Meyers SP (1998) Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J Agric Food Chem 46:3839–3843

    CAS  Google Scholar 

  • Cho EJ, Rahman MA, Kim SW, Baek YM, Hwang HJ, Oh JY, Hwang HS, Lee SH, Yun JW (2008) Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. J Microbiol Biotechnol 18(1):80–87

    CAS  PubMed  Google Scholar 

  • Cira LA, Huerta S, Hall GM, Shirai K (2002) Pilot scale lactic acid fermentation of shrimp wastes for chitin recovery. Process Biochem 37:1359–1366

    CAS  Google Scholar 

  • Chou TC, Earl FU, Chang-Jer WU, Jeng-Hsien YEH (2003) Chitosan enhances platelet adhesion and aggregation. Biophys Res Commun 302:480–483

    CAS  Google Scholar 

  • Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277

    CAS  PubMed  Google Scholar 

  • Da Silva CA, Chalouni C, Williams A, Hartl D, Lee CG, Elias JAA (2009) Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol 182:3573–3582

    PubMed  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    CAS  PubMed  Google Scholar 

  • Dass CR, Choong PF (2008) The use of chitosan formulations in cancer therapy. J Microencapsul 25:275–279

    CAS  PubMed  Google Scholar 

  • Deng MD, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, Running JA, Kunesh CA, Song L, Jerrell TA, Rosson RA (2005) Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab Eng 7(3):201–214

    CAS  PubMed  Google Scholar 

  • Dieterle C, Brendel MD, Seissler J, Eckhard M, Bretzel RG, Landgraf R (2006) Therapy of diabetes mellitus. Pancreas transplantation, islet transplantation, stem cell and gene therapy. Internist (Berlin) 47:489–496

    CAS  Google Scholar 

  • Do JY, Kwak DM, Kwon OD (2008) Antidiabetic effects of high molecular weight chitosan in streptozotocin-induced type 1 diabetic ICR mice. Lab Anim Res 24:311–317

    Google Scholar 

  • Esmaeili F, Heuking S, Junginger HE, Borchard G (2010) Progress in chitosan-based vaccine delivery systems. J Drug Del Sci Tech 20(1):53–61

    CAS  Google Scholar 

  • Felse PA, Panda T (1999) Studies on applications of chitin and its derivatives. Bioprocess Eng 20:505–512

    CAS  Google Scholar 

  • Fernández-Saiz P, Lagaron JM (2011) Chitosan for film and coating applications. In: Plackett D (ed) Biopolymers – new materials for sustainable films and coatings. John Wiley & Sons, Ltd, Chichester, pp 87–105

    Google Scholar 

  • Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH, Ingmer H, Palcic MM, Leisner JJ (2013) Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 159:833–847

    CAS  PubMed  Google Scholar 

  • Fukada Y, Kimura K, Ayaki Y (1991) Effect of chitosan feeding on intestinal bile acid metabolism in rats. Lipids 26:395–939

    CAS  PubMed  Google Scholar 

  • Gagne N, Simpson BK (1993) Use of proteolytic enzymes to facilitate recovery of chitin from shrimp wastes. Food Biotechnol 7:253–263

    CAS  Google Scholar 

  • Ge Z, Baguenard S, Lim LY, Wee A, Khor E (2004) Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049–1058

    CAS  PubMed  Google Scholar 

  • Ghorbel-Bellaaj O, Jellouli K, Younes I, Manni L, Oule Salem M, Nasri MA (2011) Solvent-stable metalloprotease produced by Pseudomonas aeruginosa A2 grown on shrimp shell waste and its application in chitin extraction. Appl Biochem Biotechnol 164:410–425

    CAS  PubMed  Google Scholar 

  • Ghorbel-Bellaaj O, Younes I, Maalej H, Hajji S, Nasri M (2012) Chitin extraction from shrimp shell waste using Bacillus bacteria. Int J Biol Macromol 51:1196–1201

    CAS  PubMed  Google Scholar 

  • Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar HS (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 5:54–72

    Google Scholar 

  • Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    CAS  Google Scholar 

  • Guminska M, Ignacak J, Wojcik E (1996) In vitro inhibitory effect of chitosan and its degradation products on energy metabolism in Ehrlich ascites tumour cells (EAT). Pol J Pharmacol 48:495–501

    CAS  PubMed  Google Scholar 

  • Halder SK, Adak A, Maity C, Jana A, Das A, Paul T, Ghosh K, Das Mohapatra PK, Pati BR, Mondal KC (2013a) Exploitation of fermented shrimp-shell hydrolysate as functional food: assessment of antioxidant, hypocholesterolemic and prebiotic activities. Indian J Exp Biol 51:924–934

    CAS  PubMed  Google Scholar 

  • Halder SK, Maity C, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC (2013b) Proficient biodegradation of shrimp shell waste by Aeromonas hydrophila SBK1 for the concomitant production of antifungal chitinase and antioxidant chitosaccharides. Int Biodeterior Biodegradation 79:88–97

    CAS  Google Scholar 

  • Halder SK, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC (2014) Appraisal of antioxidant, anti-hemolytic and DNA shielding potentialities of chitosaccharides produced innovatively from shrimp shell by sequential treatment with immobilized enzymes. Food Chem 158:325–334

    CAS  PubMed  Google Scholar 

  • Han HD, Song CK, Park YS, Noh KH, Kim JH, Hwang T, Kim TW, Shin BC (2007) A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 350:27–34

    PubMed  Google Scholar 

  • Hasegawa M, Yagi K, Iwakawa S, Hirai M (2001) Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Jpn J Cancer Res 92:459–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, Ito M (2002) Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice. Biol Pharma Bull 25:188–192

    CAS  Google Scholar 

  • Hayashi Y, Ohara N, Ganno T, Yamaguchi K, Ishizaki T, Nakamura T, Sato M (2007) Chewing chitosan-containing gum effectively inhibits the growth of cariogenic bacteria. Arch Oral Biol 52:290–294

    CAS  PubMed  Google Scholar 

  • Hernandez-Gonzalez SO, Gonzalez-Ortiz M, Martinez-Abundis E, RoblesCervantes JA (2010) Chitosan improves insulin sensitivity as determined by the

    Google Scholar 

  • HF L, Narayanan K, Lim SX, Gao S, Leong MF, Wan AC (2012) A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 33:2419–2430

    Google Scholar 

  • Hiep LV, Thanh MT, Van DTH, Khanh VTP, Dzung NA (2008) Chitosan as a hopeful adjuvant for H5N1 influenza vaccine. J Chitin Chitosan 13(10):6–8

    Google Scholar 

  • Hong SP, Kim MH, Oh SW, Han CH, Kim YH (1998) ACE inhibitory and antihypertensive effect of chitosan oligosaccharides in SHR. Korean J Food Sci Technol 30(6):1476–1479

    Google Scholar 

  • Howard K, Kjems J (2006) RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticles system. Mol Ther 14:476–484

    CAS  PubMed  Google Scholar 

  • Huang RH, Mendis E, Rajapakse N, Kim SK (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78(20):2399–2408

    CAS  PubMed  Google Scholar 

  • Husain S, Al-Samadani KH, Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Qasim SB (2017) Chitosan biomaterials for current and potential dental applications. Materials 10(6):602. https://doi.org/10.3390/ma10060602

    Article  CAS  PubMed Central  Google Scholar 

  • Illum L, Gill J, Hinchcliffe M, Fisher AN, Davis SS (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51:81–96

    CAS  PubMed  Google Scholar 

  • Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A (2002) A Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23:833–840

    CAS  PubMed  Google Scholar 

  • Ito M, Ban A, Ishihara M (2000) Anti-ulcer effects of chitin and chitosan, healthy foods, in rats. Jpn J Pharmacol 82:218–225

    CAS  PubMed  Google Scholar 

  • Jain S, Sharma RK, Vyas SP (2006) Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in-vitro and in-vivo characterization. J Pharm Pharmacol 58:303–310

    CAS  PubMed  Google Scholar 

  • Jang MJ, Kim DG, Jeong YI, Jang MK, Nah JW (2007) Preparation and characterization of low molecular weight water soluble chitosan gene carrier fractioned according to molecular weight. Polymer (Korea) 36:555–561

    Google Scholar 

  • Jauhari S, Dash AK (2006) A mucoadhesive in situ gel delivery system for paclitaxel. AAPS Pharm Sci Tech, 7: Article 53: E1–E6. http://www.aapspharmscitech.org/view.asp?art=pt070253

  • Jayakumar R, Ramachandran R, Sudheesh Kumar PT, Divyarani VV, Srinivasan S, Chennazhi KP, Tamura H, Nair SV (2010) Fabrication of chitin–chitosan/nano ZrO(2) composite scaffolds for tissue engineering applications. Int J Biol Macromol 49:274–280

    Google Scholar 

  • Je JY, Park PJ, Kim B, Kim SK (2006) Antihypertensive activity of chitin derivatives. Biopolymers. 15 83(3):250–254

    CAS  PubMed  Google Scholar 

  • Jeon YJ, Kim SK (2000a) Continuous production of chitooligosaccharides using a dual reactor system. Process Biochem 35(6):623–632

    CAS  Google Scholar 

  • Jeon YJ, Kim SK (2000b) Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohyr Polym 41(2):133–141

    CAS  Google Scholar 

  • Jeon Y, Kim SKJ (2002) Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J Microbiol Biotechnol 12:503–507

    CAS  Google Scholar 

  • Jeong YI, Kim DG, Jang MK, Nah JW (2008) Preparation and spectroscopic characterization of methoxy poly (ethylene glycol)-grafted water-soluble chitosan. Carbohydr Res 343:282–289

    CAS  PubMed  Google Scholar 

  • Jo GH, Jung WJ, Kuk JH, Oh KT, Kim YJ, Park RD (2008) Screening of protease-producing Serratia marcescens FS-3 and its application to deproteinization of crab shell waste for chitin extraction. Carbohydr Polym 74:504–508

    CAS  Google Scholar 

  • Jollès P, Muzzarelli RAA (1999) Chitin and chitinases; Birkhauser Verlag: Basel, Switzerland.

    Google Scholar 

  • Jung W, Park R (2014) Bioproduction of chitooligosaccharides: present and perspectives. Mar Drugs 12:5328–5356. https://doi.org/10.3390/md12105328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung WJ, Jo GH, Kuk JH, Kim KY, Park RD (2006) Extraction of chitin from red crab shell waste by cofermentation with Lactobacillus paracasei subsp. tolerans KCTC-3074 and Serratia marcescens FS-3. Appl Microbiol Biotechnol 71:234–237

    CAS  PubMed  Google Scholar 

  • Jung WJ, Jo GY, Kuk JH, Kim YJ, Oh KT, Park RD (2007a) Production of chitin from red crab shell waste by successive fermentation with Lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3. Carbohydr Polym 68:746–750

    CAS  Google Scholar 

  • Jung WJ, Souleimanov A, Park RD, Smith DL (2007b) Enzymatic production of N-acetyl chitooligosaccharides by crude enzyme derived from Paenibacillus illioisensis KJA-424. Carbohydr Polym 67:256–259

    CAS  Google Scholar 

  • Kao PM, Chen CI, Huang SC, Chang YC, Tsai PJ, Liu YC (2007) Development of continuous chitinase production process in a membrane bioreactor by Paenibacillus sp. CHE-N1. Process Biochem 42:606–611

    CAS  Google Scholar 

  • Karadeniz F, Kim S (2014) Antidiabetic activities of chitosan and its derivatives: a mini review, chapter 3. In: Kim S (ed) Marine carbohydrates: fundamentals and applications, part B. Academic Press Publications, Amsterdam, pp 33–44

    Google Scholar 

  • Karadeniz F, Artan M, Kong CS, Kim SK (2010) Chitooligosaccharides protect pancreatic β-cells from hydrogen peroxide-induced deterioration. Carbohydr Polym 82(1):143–147

    CAS  Google Scholar 

  • Karagozlu MZ, Kim SK (2014) Anticancer effects of chitin and chitosan derivatives. Adv Food Nutri Res 72:215–225

    CAS  Google Scholar 

  • Karzed K, Domenjoz R (1971) Effects of hexosamine derivatives and uronic acid derivatives on glycosaminoglycan metabolism of fibroblast cultures. Pharmocology 5:337–345

    Google Scholar 

  • Khanafari A, Marandi R, Sanatei S (2008) Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iran J Environ Health Sci Eng 5:1–24

    Google Scholar 

  • Khoushab F, Yamabhai M (2010) Chitin research revisited. Mar Drugs 8:1988–2012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim IS, Park JW, Kwon IC, Baik BS, Cho BC (2002) Role of BMP, beta ig-h3, and chitosan in early bony consolidation in distraction osteogenesis in a dog model. Plast Reconstr Surg 109:1966–1977

    PubMed  Google Scholar 

  • Kim S (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, New York

    Google Scholar 

  • Kim SK, Rajapakse N (2005) Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr Polym 62:357–368

    CAS  Google Scholar 

  • Kim H-L, Park S-M, Cho G-S, Kim K-Y, Kim I-C (2010) Physicochemical characteristics, antimicrobial activity, ACE inhibitory activity of chitosan-salt, and its antihypertensive effect. Food Sci Biotechnol 19(3):777–784

    CAS  Google Scholar 

  • Kim MS, You HJ, You MK, Kim NS, Shim BS, Kim HM (2005) Inhibitory effect of water-soluble chitosan on TNF-α and IL-8 secretion from HMC-1 cells. Immunopharmacol Immunotoxicol 26:401–409

    CAS  Google Scholar 

  • Kondo Y, Nakatani A, Hayashi K, Ito M (2000) Low molecular weight chitosan prevents the progression of low dose streptozotocin-induced slowly progressive diabetes mellitus in mice. Biol Pharma Bull 23:1458–1464

    CAS  Google Scholar 

  • Köping-Hoggard M, Tubulekas I, Guan H, Edwards K, Nilsson M, Vårum KM, Artursson P (2001) Chitosan as a nonviral gene delivery system. Structure-property relationships and characteristics compared with polyethylenimine in vitro and after lung administration in vivo. Gene Ther 8:1108–1121

    PubMed  Google Scholar 

  • Köping-Höggård M, Mel’nikova YS, Vårum KM, Lindman B, Artursson P (2003) Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo. J Gene Med 5:130–141

    PubMed  Google Scholar 

  • Köping-Höggård M, Vårum KM, Issa M, Danielsen S, Christensen BE, Stokke BT, Artursson P (2004) Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther 11:1441–1452

    PubMed  Google Scholar 

  • Kuk JH, Jung WJ, Jo GH, Ahn JS, Kim KY, Park RD (2005a) Selective preparation of N-acetyl-D-glucosamine and N,N′-diacetylchitobiose from chitin using a crude enzyme preparation from Aeromonas sp. Biotechnol Lett 27:7–11

    CAS  PubMed  Google Scholar 

  • Kuk JH, Jung WJ, Jo GH, Kim YC, Kim KY, Park RD (2005b) Production of N-acetyl-β-D-glucosamine from chitin by Aeromonas sp. GJ-18 crude enzyme. Appl Microbiol Biotechnol 68:384–389

    CAS  PubMed  Google Scholar 

  • Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    CAS  Google Scholar 

  • Kumirska J, Weinhold MX, Thöming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials – influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3:1875–1901

    CAS  Google Scholar 

  • Kurakake M, You S, Nakagawa K, Sugihara M, Komaki T (2000) Properties of chitosanase from Bacillus cereus S1. Curr Microbiol 40:6–9

    CAS  PubMed  Google Scholar 

  • Kurita K (2006) Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226

    CAS  PubMed  Google Scholar 

  • Lan X, Ozawa N, Nishiwaki N, Kodaira R, Okazaki M, Shimosaka M (2004) Purification, cloning, and sequence analysis of β-N-acetylglucosaminidase from the chitinolytic bacterium Aeromonas hydrophila strain SUWA-9. Biosci Biotechnol Biochem 68:1082–1090

    CAS  PubMed  Google Scholar 

  • Li L, Zhang JL, Liu JN, Xia WS (2007) Effects of chitosan on serum lipid and fat liver. Chin J Mar Drugs 26(2):7–9

    CAS  Google Scholar 

  • Liang TW, Hsieh JL, Wang SL (2012) Production and purification of a protease, a chitosanase, and chitin oligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydr Res 362:38–46

    CAS  PubMed  Google Scholar 

  • Lieder R, Thormodsson F, Ng CH, Einarsson JM, Gislason J, Petersen PH, Sigurjonsson OE (2012) Chitosan and chitin hexamers affect expansion and differentiation of mesenchymal stem cells differently. Int J Biol Macromol 51:675–680

    CAS  PubMed  Google Scholar 

  • Lien TS, Yu ST, Wu ST, Too JR (2007) Induction and purification of a thermophilic chitinase produced by Aeromonas sp. DYU-Too7 using glucosamine. Biotechnol Bioprocess Eng 12:610–617

    CAS  Google Scholar 

  • Liu BL, Kao PM, Tzeng YM, Feng KC (2003) Production of chitinase from Verticillium lecanii F091 using submerged fermentation. Enzym Microbial Technol 33:410–415

    CAS  Google Scholar 

  • Liu JN, Xia WS, Zhang JL (2008a) Effects of chitosans physico-chemical properties on binding capacities of lipid and bile salts in vitro. Chin Food Sci 29(1):45–49

    Google Scholar 

  • Liu JN, Zhang JL, Xia WS (2008b) Hypocholesterolemic effects of different chitosan samples in vitro and in vivo. Food Chem 107:419–425

    CAS  Google Scholar 

  • Liu L, Liu Y, Shin HD, Chen R, Li J, Du G, Chen J (2013) Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Appl Microbiol Biotechnol 97:6149–6158

    CAS  PubMed  Google Scholar 

  • Louise CA, Pedro A, Charles AH (1999) Process for producing N-acetyl-D-glucosamine. US Patent NO. 5998173

    Google Scholar 

  • Lu HF, Narayanan K, Lim SX, Gao S, Leong MF, Wan AC (2012) A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials 33:2419–2430

    CAS  PubMed  Google Scholar 

  • MacLaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M, Rolland AP (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 56:259–272

    CAS  PubMed  Google Scholar 

  • Maeda Y, Kimura Y (2004) Antitumor effects of various low-molecular-weight chitosans are due to increased natural killer activity of intestinal intraepithelial lymphocytes in sarcoma 180-bearing mice. J Nutr 134:945–950

    CAS  PubMed  Google Scholar 

  • Mahmoud NS, Ghaly AE, Arab F (2007) Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. Am J Biochem Biotechnol 3:1–9

    CAS  Google Scholar 

  • Makino A, Ohmae M, Kobayashi S (2006) Chitinase-catalyzed copolymerization to a chitin derivative having glucosamine unit in controlled proportion. Polym J 38:1182–1188

    CAS  Google Scholar 

  • Mao X, Guo N, Sun J, Xue C (2017) Comprehensive utilization of shrimp waste based on biotechnological methods: a review. J Clean Prod 143:814–823

    CAS  Google Scholar 

  • Minagawa T, Okamura Y, Shigemasa Y, Minami S, Okamoto Y (2007) Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydr Polym 67:640–644

    CAS  Google Scholar 

  • Mincea M, Negrulescu A, Ostafe V (2012) Preparation, modification, and applications of chitin nanowhiskers: a review. Rev Adv Mat Sci 30:225–242

    CAS  Google Scholar 

  • Miura T, Usami M, Tsuura Y, Ishida H, Seino Y (1995) Hypoglycemic and hypolipidemic effect of chitosan in normal and neonatal streptozotocin-induced diabetic mice. Biol Pharma Bull 18:1623–1625

    CAS  Google Scholar 

  • Mohire NC, Yadav AV (2010) Chitosan-based polyherbal toothpaste: as novel oral hygiene product. Indian J Dent Res 21:380–384

    PubMed  Google Scholar 

  • Moon JS, Kim HK, Koo HC, Joo Y-S, Nam H, Park YH, Kang M-I (2007) The antibacterial and immunostimulating effects of chitosan-oligosaccharides against infection by Staphylococcus aureus isolated from bovine mastitis. Appl Microbiol Biotechnol 75:989–998

    CAS  PubMed  Google Scholar 

  • Mori T, Murakami M, Okumura M, Kadosawa T, Uede T, Fujinaga T (2005) Mechanism of macrophage activation by chitin derivatives. J Vet Med Sci 67(1):51–56

    CAS  PubMed  Google Scholar 

  • Mourya VK, Inamdar NN, Choudhari YM (2011) Chitooligosaccharides: synthesis, characterization and applications. J Polym Scie Part A 53:583–612

    CAS  Google Scholar 

  • Murao S, Kuwada T, Itoh H, Oyama H, Shin T (1992) Purification and characterization of a novel type of chitinase from Vibrio alginolyticus TK-22. Biosci Biotechnol Biochem 56:368–369

    CAS  Google Scholar 

  • Muzzarelli RAA (1997) Chitosan as dietary food additives. In: Goosen MFA (ed) Applications of chitin and chitosan. Technomic, Lancaster, pp 115–127

    Google Scholar 

  • Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182

    CAS  Google Scholar 

  • Nakagawa YS, Oyama Y, Kon N, Nikaido M, Tanno K, Kogawa J, Inomata S, Masui A, Yamamura A, Kawaguchi M, Matahira Y, Totani K (2011) Development of innovative technologies to decrease the environmental burdens associated with using chitin as a biomass resource: mechanochemical grinding and enzymatic degradation. Carbohydr Polym 83:1843–1849

    CAS  Google Scholar 

  • Ngo DN, Kim MM, Kim SK (2008) Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr Polym 74(2):228–234

    CAS  Google Scholar 

  • Ngo DN, Lee SH, Kim MM (2009) Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J Funct Foods 1:188–198

    CAS  Google Scholar 

  • Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I (1984) Immunological activity of chitin and its derivatives. Vaccine 2(1):93–99

    CAS  PubMed  Google Scholar 

  • No HK, Hur EY (1998) Control of foam formation by antifoam during demineralization of crustacean shell in preparation of chitin. J Agric Food Chem 46:3844–3846

    CAS  Google Scholar 

  • Noh HK, Lee SW, Kim JM, JE O, Kim KH, Chung CP, Choi SC, Park WH, Min BM (2006) Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27:3934–3944

    CAS  PubMed  Google Scholar 

  • No HK, Cho YI, Meyers SP (1996) Dye binding capacity of commercial chitin products. J Agric Food Chem 44:1939–1942

    CAS  Google Scholar 

  • Obara K, Ishiharab M, Ozeki Y, Ishizuka T, Hayashi T, Nakamura S, Saito Y, Yura H, Matsui T, Hattori H, Takase B, Ishihara M, Kikuchi M, Maehara T (2005) Controlled release of paclitaxel from photocrosslinked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J Control Release 110:79–89

    CAS  PubMed  Google Scholar 

  • Oh KT, Kim YJ, Nguyen VN, Jung WJ, Park RD (2007) Demineralization of crab shell waste by Pseudomonas aeruginosa F722. Process Biochem 42:1069–1074

    CAS  Google Scholar 

  • Okamoto Y, Inoue A, Miyatake K, Ogihara K, Shigemasa Y, Minami S (2003a) Effects of chitin/chitosan and their oligomers/monomers on migrations of macrophages. Macromol Biosci 3:587–590

    CAS  Google Scholar 

  • Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S (2003b) Effects of chitin and chitosan on blood coagulation. Carbohydr Polym 53:337–342

    CAS  Google Scholar 

  • Okuda H, Kato H, Tsujita T (1997) Antihypertensive and antihyperlipemic actions of chitosan. J Chitin Chitosan 2:49–59

    Google Scholar 

  • Pachapur V, Guemiza K, Rouissi T, Sarmaa SJ, Brara SK (2016) Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. J Chem Technol Biotechnol 91:2331–2339

    CAS  Google Scholar 

  • Park PJ, Je JY, Kim SK (2003) Angiotensin I converting enzyme (ACE) inhibitory activity of hetero- chitooligosaccharides prepared from partially different deacetylated chitosans. J Agric Food Chem 51:4930–4934

    CAS  PubMed  Google Scholar 

  • Park PJ, Je JY, Byun HG, Moon SH, Kim SK (2004a) Antimicrobial activity of heterochitosans and their oligosaccharides with different molecular weights. J Micobiol Biotechnol 14:317–323

    CAS  Google Scholar 

  • Park PJ, Lee HK, Kim SK (2004b) Preparation of hetero chitooligosaccharides and their antimicrobial activity on Vibrio parahaemolyticus. J Micobiol Biotechnol 14:41–47

    CAS  Google Scholar 

  • Park YJ, Lee YM, Park SN, Sheen SY, Chung CP, Lee SJ (2000) Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials 2:153–159

    CAS  Google Scholar 

  • Patel MP, Patel RR, Patel JK (2010) Chitosan mediated targeted drug delivery system: a review. J Pharm Pharm Sci 13(4):536–557

    CAS  PubMed  Google Scholar 

  • Paul T, Halder SK, Das A, Ghosh K, Mandal A, Payra P, Barman P, Das Mohapatra PK, Pati BR, Mondal KC (2015) Production of chitin and bioactive materials from Black tiger shrimp (Penaeus monodon) shell waste by the treatment of bacterial protease cocktail. 3 Biotech 5(4):483–493

    PubMed  Google Scholar 

  • Percot A, Viton C, Domard A (2003) Characterization of shrimp shell deproteinization. Biomacromolecules 4:1380–1385

    CAS  PubMed  Google Scholar 

  • Pichyangkura R, Kudan S, Kultiyawong K, Sukwattanasinitt M, Aiba SI (2002) Quantitative production of 2-acetamido-2- deoxy-D-glucose from crystalline chitin by bacterial chitinase. Carbohydr Res 337:557–559

    CAS  PubMed  Google Scholar 

  • Qingming Y, Xianhui P, Weibao K, Hong Y, Yidan S, Li Z, Yanan Z, Yuling Y, Lan D, Guoan L (2010) Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chem 118:84–89

    Google Scholar 

  • de Queiroz Antonino RSCM, Lia Fook BR, de Oliveira Lima VA, de Farias Rached RÍ, Lima EP, da Silva Lima RJ, Peniche Covas CA, Lia Fook MV (2017) Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs 15:141. https://doi.org/10.3390/md15050141

    PubMed Central  Google Scholar 

  • Rao MS, Stevens WF (2005) Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversion to chitosan. J Chem Technol Biotechnol 80:1080–1087

    CAS  Google Scholar 

  • Rathore AS, Gupta RD (2015) Chitinases from bacteria to human: properties, applications, and future perspectives. Enzym Res 2015:791907. https://doi.org/10.1155/2015/791907

    Google Scholar 

  • Ravi Kumar MNV (1999) Chitin and chitosan fibres: a review. Bull Mat Sci 22:905–915

    CAS  Google Scholar 

  • Razdan A, Pettersson D (1996) Hypolipidaemic, gastrointestinal and related responses of broiler chickens to chitosans of different viscosity. Br J Nutri 76:387–397

    CAS  Google Scholar 

  • Read RC, Naylor SC, Potter CW, Bond J, Jabbal-Gill I, Fisher A, Illum L, Jennings R (2005) Effective nasal influenza vaccine delivery using chitosan. Vaccine 23:4367–4374

    CAS  PubMed  Google Scholar 

  • Reese ET, Siu RGH, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhazi M, Desbrie’res J, Tolaimate A, Rinaudo M, Vottero P, Alagui A, Meray ME (2002) Influence of the nature of the metal ions on the complexation with chitosan. Application to the treatment of liquide waste. Eur Polym J 38:1523–1530

    CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    CAS  Google Scholar 

  • Rovati L. Casula P, Mascherpa S (1972) N-acetylglucosamine for treating degenerative afflictions of the joints. US Patent NO. 3697652

    Google Scholar 

  • Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5:387–391

    CAS  PubMed  Google Scholar 

  • Ruel-Gariepy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux JC (2004) A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 57:53–63

    CAS  PubMed  Google Scholar 

  • Saikia C, Gogoi P, Maji TK (2015) Chitosan: a promising biopolymer in drug delivery applications. J Mol Genet Med S4:006. https://doi.org/10.4172/1747-0862.S4-006

    Article  Google Scholar 

  • Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, Drouiche N, Mameri N (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52:333–339

    CAS  PubMed  Google Scholar 

  • Salvatore S, Heuschkel R, Tomlin S, Davies SE, Edwards S, Walker-Smith JA, French I, Murch SH (2000) A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in paediatric chronic inflammatory bowel disease. Aliment Pharmacol Ther 14:1567–1579

    CAS  PubMed  Google Scholar 

  • Santos-Moriano P, Woodley JM, Plou FJ (2016) Continuous production of chitooligosaccharides by an immobilized enzyme in a dual-reactor system. J Mol Catal B Enzym 133:211–217

    CAS  Google Scholar 

  • Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Hiraga K, Oda K, Aiba S (2002) Production of N-acetyl-D-glucosamine from α-chitin by crude enzymes from Aeromonas hydrophila H2330. Carbohydr Res 337:761–763

    CAS  PubMed  Google Scholar 

  • Shahidi F, Vidana Arachchi JK, Jeon Y-J (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    CAS  Google Scholar 

  • Shi Q, Tiera MJ, Zhang X, Dai K, Benderdour M, Fernandes JC (2011) Chitosan-DNA/siRNA nanoparticles for gene therapy, non-viral gene therapy, Prof. Xubo Yuan (Ed.), InTech. https://doi.org/10.5772/21903

    Google Scholar 

  • Shibata Y, Metzeger W, Myrvik Q (1997a) Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan. J Immunol 159:2462–2467

    CAS  PubMed  Google Scholar 

  • Shibata Y, Foster LA, Metzger WJ, Myrvik QN (1997b) Alveolar macrophage priming by intravenous administration of chitin particles, polymers of N-acetyl-D-glucosamine, in mice. Infect Immun 65:1734–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sini TK, Santhosh S, Mathew PT (2007) Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr Res 342:2423–2429

    CAS  PubMed  Google Scholar 

  • Sugano M, Fujikawa T, Hiratsuji Y, Nakashima K, Fukuda N, Hasegawa Y (1980) A novel use of chitosan as a hypocholesterolemic agent in rats. Am J Clin Nutri 33:787–793

    CAS  Google Scholar 

  • Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403–408

    CAS  PubMed  Google Scholar 

  • Ta HT, Dass CR, Larson I, Choong PFM, Dunstan DE (2009) A chitosan hydrogel delivery system for osteosarcoma gene therapy with pigment epithelium-derived factor combined with chemotherapy. Biomaterials. https://doi.org/10.1016/j.biomaterials.2009.05.035

    CAS  PubMed  Google Scholar 

  • Talent JM, Gracy RW (1996) Pilot study of oral polymeric N-acetyl-D-glucosamine as a potential treatment for patients with osteoarthritis. Clin Ther 18:1184–1190

    CAS  PubMed  Google Scholar 

  • Tamai Y, Miyatake K, Okamoto Y, Takamori Y, Sakamoto K, Minami S (2003) Enhanced healing of cartilaginous injuries by N-acetyl-D-glucosamine and glucuronic acid. Carbohydr Polym 54:251–262

    CAS  Google Scholar 

  • Teng WL, Khor E, Tan TK, Lim LY, Tan SC (2001) Concurrent production of chitin from shrimp shells and fungi. Carbohydr Res 332:305–316

    CAS  PubMed  Google Scholar 

  • Terayama H, Takahashi S, Kuzuhara H (1993) Large scale preparation of N,N′-diacetylchitobiose by enzymatic degradation of chitin and its chemical modification. J Carbohydr Chem 12:81–93

    CAS  Google Scholar 

  • Thadathil N, Velappan SP (2014) Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem 150:392–399

    CAS  PubMed  Google Scholar 

  • Thamthiankul S, Suan-Ngay S, Tantimavanich S, Panbangred W (2001) Chitinase from Bacillus thuringiensis subsp pakistani. Appl Microbiol Biotechnol 56:395–401

    CAS  PubMed  Google Scholar 

  • Trung TS, Duy Bao HN (2015) Physicochemical properties and antioxidant activity of chitin and chitosan prepared from Pacific white shrimp waste. Int J Carbohydr Chem 2015:706259. 6

    Google Scholar 

  • Truong T, Hausler R, Monette F, Niquette P (2007) Fishery industrial waste valorization for the transformation of chitosan by hydrothermo-chemical method. Rev Sci Eau 20:253–262

    CAS  Google Scholar 

  • Uragami T, Tokura S (eds) (2006) Material science of chitin and chitosan. Springer, Tokyo

    Google Scholar 

  • Usui T, Matsu H, Isobe K (1990) Enzymic synthesis of useful chito-oligosaccharides utilizing transglycosylation by chitinolytic enzymes in a buffer containing ammonium sulfate. Carbohydr Res 203:65–77

    CAS  PubMed  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M, Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    CAS  PubMed  Google Scholar 

  • Villa-Lerma G, Gonzalez-Marquez H, Gimeno M, Lopez-Luna A, Barzana E, Shirai K (2013) Ultrasonication and steam-explosion as chitin pretreatments for chitin oligosaccharide production by chitinases of Lecanicillium lecanii. Bioresour Technol 146:794–798

    CAS  PubMed  Google Scholar 

  • Waldeck J, Daum G, Bisping B, Meinhardt F (2006) Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl Environ Microbiol 72:7879–7885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan AC, Tai BC (2013) CHITIN-a promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Advances 31(8):1776–1785

    CAS  Google Scholar 

  • Wang SL, Chio SH (1998) Deproteination of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-1. Enzym Microb Technol 22:629–633

    CAS  Google Scholar 

  • Wang SL, Lin TY, Yen YH, Liao HF, Chen YJ (2006) Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydr Res 341:2507–2515

    CAS  PubMed  Google Scholar 

  • Wang Z, Zheng L, Yang S, Niu R, Chu E, Lin X (2007) N-acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro. Biochem Biophys Res Commun 357:26–31

    CAS  PubMed  Google Scholar 

  • Wang SL, Huang TY, Wang CY, Liang TW, Yen YH, Sakata Y (2008) Bioconversion of squid pen by Lactobacillus paracasei subsp. paracasei TKU010 for the production of proteases and lettuce growth enhancing biofertilizers. Bioresour Technol 99:5436–5443

    CAS  PubMed  Google Scholar 

  • Wang SL, Lin CL, Liang TW, Liu KC, Kuo YH (2009a) Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants. Bioresour Technol 100:316323

    CAS  PubMed  Google Scholar 

  • Wang SL, Liou JY, Liang TW, Liu KC (2009b) Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides. Process Biochem 44:854–861

    Google Scholar 

  • Wang SL, Lin CL, Liang TW, Liu KC, Kuo YH (2009c) Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants. Bioresour Technol 100:316–323

    CAS  PubMed  Google Scholar 

  • Wang SL, Chang TJ, Liang TW (2010a) Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials. Biodegradation 21:321–333

    CAS  PubMed  Google Scholar 

  • Wang SL, Hsu WH, Liang TW (2010b) Conversion of squid pen by Pseudomonas aeruginosa K187 fermentation for the production of N-acetyl chitooligosaccharides and biofertilizers. Carbohydr Res 345:880–885

    CAS  PubMed  Google Scholar 

  • Wang SL, Liu CP, Liang TW (2012) Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydr Pol 90:1305–1313

    CAS  Google Scholar 

  • Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocol 25:170–179

    CAS  Google Scholar 

  • Xiong C, Wu H, Wei P, Pan M, Tuo Y, Kusakabe I, Du Y (2009) Potent angiogenic inhibition effects of deacetylated chitohexaose separated from chitooligosaccharides and its mechanism of action in vitro. Carbohydr Res 344:1975–1983

    CAS  PubMed  Google Scholar 

  • Xu QS, Dou H, Wei P, Tan CY, Yun XJ, Wu YH, Bal XF, Ma XJ, Du YG (2008) Chitooligosaccharides induce apoptosis of human hepatocellular carcinoma cells via up-regulation of Bax. Carbohydr Polym 71:509–514

    CAS  Google Scholar 

  • Yan Q, Fong SS (2015) Bacterial chitinase: nature and perspectives for sustainable bioproduction. Bioresour Bioprocess 2:31. https://doi.org/10.1186/s40643-015-0057-5

    Article  Google Scholar 

  • Yang JK, Shih IL, Tzeng YM, Wang SL (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzym Microb Technol 26:406–413

    CAS  Google Scholar 

  • Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74:840–844

    CAS  Google Scholar 

  • Yen MT, Yang JH, Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21

    CAS  Google Scholar 

  • Yoon HJ, Moon ME, Park HS, Im SY, Kim YH (2007) Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem Biophys Res Commun 358:954–959

    CAS  PubMed  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. structure, properties and applications. Mar Drugs 13:1133–1174. https://doi.org/10.3390/md13031133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusof NLBM, Wee A, Lim LY, Khor E (2003) Flexible chitin films as potential wound-dressing materials: wound model studies. J Biomed Mater Res 66A:224–232

    CAS  Google Scholar 

  • Zaku SG, Emmanuel SA, Aguzue OC, Thomas SA (2011) Extraction and characterization of chitin; a functional biopolymer obtained from scales of common carp fish (Cyprinus carpio l.): a lesser known source. Afr J Food Sci 5:478–483

    CAS  Google Scholar 

  • Zhang XY, Dae AL, Zhang XK, Kuroiwa K (2000) Purification and characterization of chitosanase and exo-β-D-glucosaminidase from Koji Mold, Aspergillus oryzae IAM2660. Biosci Biotechnol Biochem 64:1896–1902

    CAS  PubMed  Google Scholar 

  • Zhang W, Yang H, Kong X, Mohapatra S, San Juan-Vergara H, Hellermann G, Behera S, Singam R, Lockey RF, Mohapatra SS (2005) Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat Med 11:L56–L62

    Google Scholar 

  • Zhang Y, Lee ET, Devereux RB, Yeh J, Best LG, Fabsitz RR, Howard BV (2006) Prehypertension, diabetes, and cardiovascular disease risk in a population based sample: the strong heart study. Hypertension 47:410–414

    CAS  PubMed  Google Scholar 

  • Zhang J, Xia W, Liu P, Cheng Q, Tahirou T, Gu W, Li B (2010) Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 8:1962–1987. https://doi.org/10.3390/md8071962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Park R, Muzzarelli RAA (2010) Chitin deacetylases: properties and applications. Mar Drugs 8:24–46. https://doi.org/10.3390/md8010024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Xia W, Zhang C, Yu L (2006) In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physicochemical properties. LWT- Food Sci Technol 39:1087–1092

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Kumar Halder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halder, S.K., Mondal, K.C. (2018). Microbial Valorization of Chitinous Bioresources for Chitin Extraction and Production of Chito-Oligomers and N-Acetylglucosamine: Trends, Perspectives and Prospects. In: Patra, J., Das, G., Shin, HS. (eds) Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-7140-9_4

Download citation

Publish with us

Policies and ethics