Skip to main content

Using Continuous Glucose Monitoring for Patients with Fasting Hyperglycemia

  • Chapter
  • First Online:
Continuous Glucose Monitoring
  • 1163 Accesses

Abstract

Fasting hyperglycemia is one of the challenges in the management of diabetes mellitus, especially in patients with type 1 diabetes. The dawn phenomenon and Somogyi effect are two important causes of fasting hyperglycemia. This chapter focuses on clinical application of continuous glucose monitoring (CGM) in the detection and control of the dawn phenomenon and Somogyi effect. This chapter will first briefly introduce the concepts of the dawn phenomenon and Somogyi effect and their pathogenesis and then will focus on the classification and analysis of the dawn phenomenon and Somogyi effect with clinical utilization of CGM in recent years, including how to apply CGM for better determination and identification of the dawn phenomenon and Somogyi effect as well as how to use CGM to guide individualized treatment for the dawn phenomenon and Somogyi effect. At the end of this chapter, the potentially important roles of CGM in research into the pathophysiological mechanism of fasting hyperglycemia and individualized treatment will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt MI, Hadji-Georgopoulos A, Rendell M, Margolis S, Kowarski A. The dawn phenomenon, an early morning glucose rise: implications for diabetic intraday blood glucose variation. Diabetes Care. 1981;4:579–85.

    Article  CAS  PubMed  Google Scholar 

  2. Bolli GB, Gerich JE. The “dawn phenomenon”--a common occurrence in both non-insulin-dependent and insulin-dependent diabetes mellitus. N Engl J Med. 1984;310:746–50. https://doi.org/10.1056/NEJM198403223101203.

    Article  PubMed  CAS  Google Scholar 

  3. Monnier L, Colette C, Sardinoux M, Baptista G, Regnier-Zerbib A, Owens D. Frequency and severity of the dawn phenomenon in type 2 diabetes: relationship to age. Diabetes Care. 2012;35:2597–9. https://doi.org/10.2337/dc12-0385.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rybicka M, Krysiak R, Okopień B. The dawn phenomenon and the Somogyi effect - two phenomena of morning hyperglycaemia. Endokrynol Pol. 2011;62:276–84.

    PubMed  Google Scholar 

  5. Monnier L, Colette C, Dejager S, Owens D. Magnitude of the dawn phenomenon and its impact on the overall glucose exposure in type 2 diabetes: is this of concern? Diabetes Care. 2013;36:4057–62. https://doi.org/10.2337/dc12-2127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Somogyi M. Exacerbation of diabetes by excess insulin action. Am J Med. 1959;26:169–91.

    Article  CAS  PubMed  Google Scholar 

  7. Perriello G, De Feo P, Torlone E, Calcinaro F, Ventura MM, Basta G, Santeusanio F, Brunetti P, Gerich JE, Bolli GB. The effect of asymptomatic nocturnal hypoglycemia on glycemic control in diabetes mellitus. N Engl J Med. 1988;319:1233–9. https://doi.org/10.1056/NEJM198811103191901.

    Article  PubMed  CAS  Google Scholar 

  8. Bolli GB, Gottesman IS, Campbell PJ, Haymond MW, Cryer PE, Gerich JE. Glucose counterregulation and waning of insulin in the Somogyi phenomenon (posthypoglycemic hyperglycemia). N Engl J Med. 1984;311:1214–9. https://doi.org/10.1056/NEJM198411083111904.

    Article  PubMed  CAS  Google Scholar 

  9. Matyka KA, Crowne EC, Havel PJ, Macdonald IA, Matthews D, Dunger DB. Counterregulation during spontaneous nocturnal hypoglycemia in prepubertal children with type 1 diabetes. Diabetes Care. 1999;22:1144–50.

    Article  CAS  PubMed  Google Scholar 

  10. Tordjman KM, Havlin CE, Levandoski LA, White NH, Santiago JV, Cryer PE. Failure of nocturnal hypoglycemia to cause fasting hyperglycemia in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1987;317:1552–9. https://doi.org/10.1056/NEJM198712173172502.

    Article  PubMed  CAS  Google Scholar 

  11. Havlin CE, Cryer PE. Nocturnal hypoglycemia does not commonly result in major morning hyperglycemia in patients with diabetes mellitus. Diabetes Care. 1987;10:141–7.

    Article  CAS  PubMed  Google Scholar 

  12. Mozersky RP, Bahl VK, Patel H, Patel N, Palushock S, Yamakawa H, Mook W, Basuray R, Velez-Giraldo JR. Fasting hyperglycemia in type I diabetes mellitus. J Am Osteopath Assoc. 1993;93:769–74.

    PubMed  CAS  Google Scholar 

  13. Cohen M, Zimmet PZ. Home blood-glucose monitoring: a new approach to the management of diabetes mellitus. Med J Aust. 1980;2:713–6.

    PubMed  CAS  Google Scholar 

  14. Kapellen TM, Heidtmann B, Bachmann J, Ziegler R, Grabert M, Holl RW. Indications for insulin pump therapy in different age groups: an analysis of 1,567 children and adolescents. Diabet Med. 2007;24:836–42. https://doi.org/10.1111/j.1464-5491.2007.02224.x.

    Article  PubMed  CAS  Google Scholar 

  15. Carroll MF, Hardy KJ, Burge MR, Schade DS. Frequency of the dawn phenomenon in type 2 diabetes: implications for diabetes therapy. Diabetes Technol Ther. 2002;4:595–605. https://doi.org/10.1089/152091502320798213.

    Article  PubMed  Google Scholar 

  16. Ando H, Ushijima K, Shimba S, Fujimura A. Daily fasting blood glucose rhythm male mice: a role of the circadian clock in the liver. Endocrinology. 2016;157:463–9. https://doi.org/10.1210/en.2015-1376.

    Article  PubMed  CAS  Google Scholar 

  17. Campbell PJ, Bolli GB, Cryer PE, Gerich JE. Pathogenesis of the dawn phenomenon in patients with insulin-dependent diabetes mellitus. Accelerated glucose production and impaired glucose utilization due to nocturnal surges in growth hormone secretion. N Engl J Med. 1985;312:1473–9. https://doi.org/10.1056/NEJM198506063122302.

    Article  PubMed  CAS  Google Scholar 

  18. Shih KC, Hsieh SH, Kwok CF, Hwu CM, Hsieh PS, Ho LT. Effect of growth hormone on dawn phenomenon in patients with type 2 diabetes. Growth Factors. 2013;31:66–73. https://doi.org/10.3109/08977194.2013.772996.

    Article  PubMed  CAS  Google Scholar 

  19. Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30:152–77. https://doi.org/10.1210/er.2008-0027.

    Article  PubMed  CAS  Google Scholar 

  20. Yagasaki H, Kobayashi K, Saitou T, Nagamine K, Mitsui Y, Mochizuki M, Kobayashi K, Cho H, Ohyama K, Amemiya S, Nakazawa S. Nocturnal blood glucose and IGFBP-1 changes in type 1 diabetes: Differences in the dawn phenomenon between insulin regimens. Exp Clin Endocrinol Diabetes. 2010;118:195–9. https://doi.org/10.1055/s-0029-1239518.

    Article  PubMed  CAS  Google Scholar 

  21. Monnier L, Colette C, Rabasa-Lhoret R, Lapinski H, Caubel C, Avignon A, Boniface H. Morning hyperglycemic excursions: a constant failure in the metabolic control of non-insulin-using patients with type 2 diabetes. Diabetes Care. 2002;25:737–41.

    Article  PubMed  Google Scholar 

  22. Boden G, Chen X, Urbain JL. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes. 1996;45:1044–50.

    Article  CAS  PubMed  Google Scholar 

  23. Radziuk J, Pye S. Diurnal rhythm in endogenous glucose production is a major contributor to fasting hyperglycaemia in type 2 diabetes. Suprachiasmatic deficit or limit cycle behaviour? Diabetologia. 2006;49:1619–28. https://doi.org/10.1007/s00125-006-0273-9.

    Article  PubMed  CAS  Google Scholar 

  24. Chen W, Hoo RL, Konishi M, Itoh N, Lee PC, Ye HY, Lam KS, Xu A. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes. J Biol Chem. 2011;286:34559–66. https://doi.org/10.1074/jbc.M111.285965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yu H, Xia F, Lam KS, Wang Y, Bao Y, Zhang J, Gu Y, Zhou P, Lu J, Jia W, Xu A. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin Chem. 2011;57:691–700. https://doi.org/10.1373/clinchem.2010.155184.

    Article  PubMed  CAS  Google Scholar 

  26. Cryer PE. Hierarchy of physiological responses to hypoglycemia: relevance to clinical hypoglycemia in type I (insulin dependent) diabetes mellitus. Horm Metab Res. 1997;29:92–6. https://doi.org/10.1055/s-2007-978997.

    Article  PubMed  CAS  Google Scholar 

  27. Perriello G, De Feo P, Torlone E, Fanelli C, Santeusanio F, Brunetti P, Bolli GB. The dawn phenomenon in type 1 (insulin-dependent) diabetes mellitus: magnitude, frequency, variability, and dependency on glucose counterregulation and insulin sensitivity. Diabetologia. 1991;34:21–8.

    Article  CAS  PubMed  Google Scholar 

  28. Schaepelynck-Bélicar P, Vague P, Simonin G, Lassmann-Vague V. Improved metabolic control in diabetic adolescents using the continuous glucose monitoring system (CGMS). Diabetes Metab. 2003;29:608–12.

    Article  PubMed  Google Scholar 

  29. Guillod L, Comte-Perret S, Monbaron D, Gaillard RC, Ruiz J. Nocturnal hypoglycaemias in type 1 diabetic patients: what can we learn with continuous glucose monitoring? Diabete Metab. 2007;33:360. https://doi.org/10.1016/j.diabet.2007.03.007.

    Article  PubMed  CAS  Google Scholar 

  30. Høi-Hansen T, Pedersen-Bjergaard U, Thorsteinsson B. The Somogyi phenomenon revisited using continuous glucose monitoring in daily life. Diabetologia. 2005;48:2437–8. https://doi.org/10.1007/s00125-005-1946-5.

    Article  PubMed  Google Scholar 

  31. Choudhary P, Davies C, Emery CJ, Heller SR. Do high fasting glucose levels suggest nocturnal hypoglycaemia? The Somogyi effect-more fiction than fact? Diabet Med. 2013;30:914–7. https://doi.org/10.1111/dme.12175.

    Article  PubMed  CAS  Google Scholar 

  32. Colette C, Ginet C, Boegner C, Benichou M, Pham TC, Cristol JP, Monnier L. Dichotomous responses of inter and postprandial hyperglycaemia to short-term calorie restriction in patients with type 2 diabetes. Eur J Clin Investig. 2005;35:259–64. https://doi.org/10.1111/j.1365-2362.2005.01482.x.

    Article  CAS  Google Scholar 

  33. Zhou J, Jia W, Bao Y, Ma X, Lu W, Li H, Hu C, Xiang K. Glycemic variability and its responses to intensive insulin treatment in newly diagnosed type 2 diabetes. Med Sci Monit. 2008;14:CR552–8. https://doi.org/10.3760/j:issn:0376-2491.2006.14.009.

    Article  PubMed  CAS  Google Scholar 

  34. Zhou J, Jia WP, Yu M, Ma XJ, Bao YQ, Lu W. The features of postprandialglucose state in type 2 diabetes mellitus. Zhonghua Yi Xue Za Zhi. 2006;86:970–5.

    PubMed  CAS  Google Scholar 

  35. Atiea JA, Luzio S, Owens DR. The dawn phenomenon and diabetes control in treated NIDDM and IDDM patients. Diabetes Res Clin Pract. 1992;16:183–90.

    Article  CAS  PubMed  Google Scholar 

  36. Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ, A1c-Derived Average Glucose Study Group. Translating the A1C assay into estimated average glucose values. Diabetes Care. 2008;31:1473–8. https://doi.org/10.2337/dc08-0545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care. 2007;30:263–9. https://doi.org/10.2337/dc06-1612.

    Article  PubMed  Google Scholar 

  38. Matyka K, Ford-Adams M, Dunger DB. Hypoglycaemia and counterregulation during childhood. Horm Res. 2002;57(Suppl 1):85–90.

    PubMed  CAS  Google Scholar 

  39. Tone A, Iseda I, Higuchi C, Tsukamoto K, Katayama A, Matsushita Y, Hida K, Wada J, Shikata K. Comparison of insulin detemir and insulin glargine on glycemic variability in patients with type 1 and type 2 diabetes. Exp Clin Endocrinol Diabetes. 2010;118:320–4. https://doi.org/10.1055/s-0029-1243230.

    Article  PubMed  CAS  Google Scholar 

  40. Sheehan JP. Fasting hyperglycemia: etiology, diagnosis, and treatment. Diabetes Technol Ther. 2004;6:525–33. https://doi.org/10.1089/1520915041705910.

    Article  PubMed  Google Scholar 

  41. Hanew K, Sugawara A, Shimizu Y, Sato S, Sasaki A, Tazawa S, Ishii K, Saitoh T, Saso S, Yoshinaga K. The combination therapy with bromocriptine and cyproheptadine in patients with acromegaly. Endocrinol Jpn. 1989;36:429–38.

    Article  CAS  PubMed  Google Scholar 

  42. Porcellati F, Lucidi P, Bolli GB, Fanelli CG. Thirty years of research on the dawn phenomenon: lessons to optimize blood glucose control in diabetes. Diabetes Care. 2013;36:3860–2. https://doi.org/10.2337/dc13-2088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. ORIGIN Trial Investigators, Gerstein HC, Bosch J, Dagenais GR, Díaz R, Jung H, Maggioni AP, Pogue J, Probstfield J, Ramachandran A, Riddle MC, Rydén LE, Yusuf S. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367:319–28. https://doi.org/10.1056/NEJMoa1203858.

    Article  CAS  Google Scholar 

  44. Pistrosch F, Köhler C, Schaper F, Landgraf W, Forst T, Hanefeld M. Effects of insulin glargine versus metformin on glycemic variability, microvascular and beta-cell function in early type 2 diabetes. Acta Diabetol. 2013;50:587–95. https://doi.org/10.1007/s00592-012-0451-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. King AB. Once-daily insulin detemir is comparable to once-daily insulin glargine in providing glycaemic control over 24 h in patients with type 2 diabetes: a double-blind, randomized, crossover study. Diabetes Obes Metab. 2009;11:69–71. https://doi.org/10.1111/j.1463-1326.2008.01014.x.

    Article  PubMed  CAS  Google Scholar 

  46. King AB. No higher dose requirements with insulin detemir than glargine in type 2 diabetes: a crossover, double-blind, and randomized study using continuous glucose monitoring. J Diabetes Sci Technol. 2010;4:151–4. https://doi.org/10.1177/193229681000400119.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Heise T, Nosek L, Rønn BB, Endahl L, Heinemann L, Kapitza C, Draeger E. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes. 2004;53:1614–20.

    Article  CAS  PubMed  Google Scholar 

  48. Swinnen SG, Simon AC, Holleman F, Hoekstra JB, Devries JH. Insulin detemir versus insulin glargine for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011:CD006383. https://doi.org/10.1002/14651858.CD006383.pub2.

  49. Hollander P, King AB, Del Prato S, Sreenan S, Balci MK, Muñoz-Torres M, Rosenstock J, Hansen CT, Niemeyer M, Garber AJ. Insulin degludec improves long-term glycaemic control similarly to insulin glargine but with fewer hypoglycaemic episodes in patients with advanced type 2 diabetes on basal-bolus insulin therapy. Diabetes Obes Metab. 2015;17:202–6. https://doi.org/10.1111/dom.12411.

    Article  PubMed  CAS  Google Scholar 

  50. Simioni N, Filippi A, Scardapane M, Nicolucci A, Rossi MC, Frison V. Efficacy and safety of insulin degludec for hyperglycemia management in noncritical hospitalized patients with diabetes: an observational study. Diabetes Ther. 2017;8:941–6. https://doi.org/10.1007/s13300-017-0271-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Shields A, Sankaranarayanan S. Basal insulin regime change from Lantus to Toujeo resulted in fewer hypoglycaemic episodes in a 28-year-old man with diabetes mellitus. BMJ Case Rep. 2016;2016:bcr2016215831. https://doi.org/10.1136/bcr-2016-215831.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Papargyri P, Ojeda Rodríguez S, Corrales Hernández JJ, Mories Álvarez MT, Recio Córdova JM, Delgado Gómez M, Sánchez Marcos AI, Iglesias López RA, Herrero Ruiz A, Beaulieu Oriol M, Miralles García JM. An observational 7-year study of continuous subcutaneous insulin infusion for the treatment of type 1 diabetes mellitus. Endocrinol Nutr. 2014;61:141–6. https://doi.org/10.1016/j.endonu.2013.09.003.

    Article  PubMed  Google Scholar 

  53. Bouchonville MF, Jaghab JJ, Duran-Valdez E, Schrader RM, Schade DS. The effectiveness and risks of programming an insulin pump to counteract the dawn phenomenon in type 1 diabetes. Endocr Pract. 2014;20:1290–6. https://doi.org/10.4158/EP144198.OR.

    Article  Google Scholar 

  54. Garg SK, Weinzimer SA, Tamborlane WV, Buckingham BA, Bode BW, Bailey TS, Brazg RL, Ilany J, Slover RH, Anderson SM, Bergenstal RM, Grosman B, Roy A, Cordero TL, Shin J, Lee SW, Kaufman FR. Glucose outcomes with the in-home use of a hybrid closed-loop insulin delivery system in adolescents and adults with type 1 diabetes. Diabetes Technol Ther. 2017;19:155–63. https://doi.org/10.1089/dia.2016.0421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd. and Shanghai Scientific and Technical Publishers

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, J. (2018). Using Continuous Glucose Monitoring for Patients with Fasting Hyperglycemia. In: Jia, W. (eds) Continuous Glucose Monitoring. Springer, Singapore. https://doi.org/10.1007/978-981-10-7074-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7074-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7073-0

  • Online ISBN: 978-981-10-7074-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics