Skip to main content
  • 1191 Accesses

Abstract

Spinal cord injury usually results in conditions that affect motor, sensory, and autonomic functions. In addition to the injuries associated with the musculoskeletal system, these primarily affect the mobility of the patient in the early stages of rehabilitation. During rehabilitation, improvements of motor and sensory deficits are important to maintain independence in activities of daily living such as ambulation. The ability to walk is the ultimate goal of rehabilitation for patients with spinal cord injuries. Ambulation in patients with spinal cord injury is influenced by the level of injury and the different levels of muscle paralysis, sensory impairment, the lack of trunk control, and spasticity. Depending on the level and completeness of the spinal cord injury, the motor function available is the main determinant of waking ability. Several other factors, including muscle tone, proprioception, endurance, age, range of motion, and additional impairments or comorbidities, are also important in determining options available for walking after spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arazpour M, Bani MA, Mousavi ME, et al. Chapter 10. Orthoses for spinal cord injury patients. In: Fuller H, Gates M, editors. Recovery of motor function following spinal cord injury. London: IntechOpen; 2016. p. 259–76. http://www.intechopen.com/books/recovery-of-motor-function-following-spinal-cord-injury.

    Google Scholar 

  • Arazpour M, Chitsazan A, Hutchins SW, et al. Design and simulation of a new powered gait orthosis for paraplegic patients. Prosthet Orthot Int. 2012;36(1):125–30.

    Article  Google Scholar 

  • Bernardi M, Canale I, Castellano V, et al. The efficiency of walking of paraplegic patients using a reciprocating gait orthosis. Paraplegia. 1995;3(7):409–15.

    Google Scholar 

  • Bernardi M, Macaluso A, Sproviero E, et al. Cost of walking and locomotor impairment. J Electromyogr Kinesiol. 1999;9(2):149–57.

    Article  CAS  Google Scholar 

  • Ditunno PL, Ditunno JF Jr. Walking index for spinal cord injury (WISCI II): scale revision. Spinal Cord. 2001;39(12):654–6.

    Article  Google Scholar 

  • Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91(11):911–21.

    Article  Google Scholar 

  • Field-Fote EC, Fluet GG, Schafer SD, et al. The spinal cord injury functional ambulatory inventory (SCI-FAI). J Rehabil Med. 2001;33(4):177–81.

    Article  CAS  Google Scholar 

  • Giszter SF. Spinal cord injury: present and future therapeutic devices and prostheses. Neurotherapeutics. 2008;5(1):147–62.

    Article  Google Scholar 

  • Hardin EC, Kobetic R, Triolo RJ. Ambulation and spinal cord injury. Phys Med Rehabil Clin N Am. 2013;24:355–70.

    Article  Google Scholar 

  • Harvey L, Davis G, Smith M, et al. Energy expenditure during gait using the walkabout and isocentric reciprocal gait orthoses in persons with paraplegia. Arch Phys Med Rehabil. 1998;79(8):945–9.

    Article  CAS  Google Scholar 

  • Harvey LA, Smith MB, Davis GM, et al. Functional outcomes attained by T9-12 paraplegic patients with the walkabout and the isocentric reciprocal gait orthoses. Arch Phys Med Rehabil. 1997;78(7):706–11.

    Article  CAS  Google Scholar 

  • Hirokawa S, Grimm M, Solomonow M, et al. Energy consumption in paraplegic ambulation using the reciprocating gait orthosis and electric stimulation of the thigh muscles. Arch Phys Med Rehabil. 1990;71(9):687–94.

    CAS  PubMed  Google Scholar 

  • Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005;85(1):52–66.

    PubMed  Google Scholar 

  • Jaspers P, Peeraer L, Van Petegem W, et al. The use of an advanced reciprocating gait orthosis by paraplegic individuals: a follow-up study. Spinal Cord. 1997;35(9):585–9.

    Article  CAS  Google Scholar 

  • Johnson W, Fatone S, Gard S. Walking mechanics of persons who use reciprocating gait orthoses. J Rehabil Res Dev. 2009;46(3):435–46.

    PubMed  Google Scholar 

  • Katz-Leurer M, Weber C, Smerling-Kerem J, et al. Prescribing the reciprocal gait orthosis for myelomeningocele children: a different approach and clinical outcome. Pediatr Rehabil. 2004;7(2):105–9.

    Article  Google Scholar 

  • Kawashima N, Sone Y, Nakazawa K, et al. Energy expenditure during walking with weight-bearing control (WBC) orthosis in thoracic level of paraplegic patients. Spinal Cord. 2003;41(9):506–10.

    Article  CAS  Google Scholar 

  • Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313–9.

    Article  CAS  Google Scholar 

  • Merati G, Sarchi P, Ferrarin M, et al. Paraplegic adaptation to assisted-walking: energy expenditure during wheelchair versus orthosis use. Spinal Cord. 2000;38(1):37–44.

    Article  CAS  Google Scholar 

  • Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013;94(11):2297–308.

    Article  Google Scholar 

  • Motlock WM. Principles of orthotic management for child and adult paraplegia and clinical experience with the isocentric RGO. In: Proceeding of 7th world congress of the international society in prosthetic and orthotics, Chicago, 1992.

    Google Scholar 

  • Nene A, Hermens H, Zilvold G. Paraplegic locomotion: a review. Spinal Cord. 1996;34(9):507–24.

    Article  CAS  Google Scholar 

  • Rossignol S, Dubuc R. Spinal pattern generation. Curr Opin Neurobiol. 1994;4:894–902.

    Article  CAS  Google Scholar 

  • Swinnen E, Duerinck S, Baeyens JP, et al. Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med. 2010;42(6):520–6.

    Article  Google Scholar 

  • Sykes L, Edwards J, Powell ES, et al. The reciprocating gait orthosis: long-term usage patterns. Arch Phys Med Rehabil. 1995;76(8):779–83.

    Article  CAS  Google Scholar 

  • Wirz M, Colombo G, Dietz V. Long term effects of locomotor training in spinal humans. J Neurol Neurosurg Psychiatry. 2001;71:93–6.

    Article  CAS  Google Scholar 

Suggested Reading

  • American Spinal Injury Association, editor. International standards for neurological classification of spinal cord injury. Revised 2011. Updated 2015 ed. Atlanta: American Spinal Injury Association; 2015.

    Google Scholar 

  • Bromley I. Tetraplegia and paraplegia: a guide for physiotherapists. New York: Churchill Livingstone; 1976.

    Google Scholar 

  • Buchanan LE, Nawoczenski DA, editors. Spinal cord injury-concepts and management approaches. Baltimore, MD: Williams & Wilkins; 1987.

    Google Scholar 

  • Campbell WW. DeJong’s the neurologic examination. 7th ed. New York: Wolters Kluwer Lippincott Williams & Wilkins; 1992.

    Google Scholar 

  • Cardenas DD, Dalal K, editors. Spinal cord injury rehabilitation. Physical Medicine and Rehabilitation Clinics of North America. Philadelphia, PA: Elsevier; 2014.

    Google Scholar 

  • Cardenas DD, Hooton TM, editors. Medical complications in physical medicine and rehabilitation. New York: Demos Medical Publishing, LLC; 2015.

    Google Scholar 

  • Chhabra HS, editor. ISCoS textbook on comprehensive management of spinal cord injuries. New Delhi: Wolters Kluwer; 2015.

    Google Scholar 

  • Green D, editor. Medical management of long-term disability. 2nd ed. Boston, MA: Butterworth-Heinemann; 1996.

    Google Scholar 

  • Harrison P. Managing spinal injury: critical care. The international management of people with actual or suspected spinal cord injury in high dependency and intensive care unit. London: The Spinal Injury Association; 2000.

    Google Scholar 

  • Harvey L. Management of spinal cord injuries: a guide for physiotherapists. Philadelphia, PA: Churchill Livingstone; 2008.

    Google Scholar 

  • Jallo J, Vaccaro AR, editors. Neurotrauma and critical care of the spine. 2nd ed. New York: Thieme; 2018.

    Google Scholar 

  • Kennedy P. The Oxford handbook of rehabilitation psychology. Oxford: Oxford University Press; 2012.

    Book  Google Scholar 

  • Somers MF. Spinal cord injury. Functional rehabilitation. 3rd ed. New York: Pearson; 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ko, HY. (2019). Walking Dysfunction. In: Management and Rehabilitation of Spinal Cord Injuries. Springer, Singapore. https://doi.org/10.1007/978-981-10-7033-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7033-4_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7032-7

  • Online ISBN: 978-981-10-7033-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics