Skip to main content

Bioengineering of DREB and NAC Transcriptional Factors for Enhanced Plant Tolerance Against Abiotic Stresses

  • Chapter
  • First Online:
Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity

Abstract

Plants growing in their native environment face several types of abiotic stresses that intentionally affect their yields at significant levels. Plant reactions toward stress are complicated and involve various cellular, physio-biochemical, and molecular adaptations. Several recent studies show that under stress conditions, plants exhibit a series of several physiological and molecular responses as a part of their stress tolerance mechanisms. Such types of interactions among various stresses point to an in-between talks among their responsive pathways of cell signaling. This type of cross talk may be both synergistic and antagonistic and commiserate the defense system which combines the plant growth hormones, transcriptional factors, cascades such as kinase, and reactive oxygen species (ROS) as an aid. Such cross talk could lead to a cross-tolerance and the enhancement of plant’s resistance levels against abiotic stresses. In recent years, transcriptional factors (TFs) have been reported to play important roles in crop improvement from the advent of agriculture. Transcriptional factors (TFs) have reported to be therefore good candidates for molecular genetics to enhance plant tolerance toward abiotic stress because of their major roles as regulators of the clusters of several genes. In this chapter, the current status of transgenic or genetically modified plants developed for enhanced tolerance against abiotic stresses by overexpressing DREB and NAC transcriptional factors has been discussed in detail. Therefore, the collective efforts and the results of several collaborative studies would definitely contribute toward the sustainable food production at global level and would also be helpful to prevent the large-scale environmental damages that result from the course of several abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallat AMA, Ayad JY, Elenein JMA, Ajlouni Z, Al WA (2014) Harwood: overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.) Mol Breed 33(2):401–414

    Article  CAS  Google Scholar 

  • Abdallat AMA, Ali Sheikh OMA, Alnemer LM (2015) Overexpression of two ATNAC3 related genes improves drought and salt tolerance in tomato (Solanum lycopersicum L.) Plant Cell Tissue Organ Cult 120(3):989–1001

    Article  CAS  Google Scholar 

  • Abogadallah GM, Nada RM, Malinowski R, Quick P (2011) Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta 233:1265–1276

    Article  CAS  PubMed  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Agarwal P, Agarwal PK, Joshi AJ, Reddy MK, Sopory SK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amudha J, Chhajed S, Balasubramani G (2014) Cotton transgenic plants with Dre-binding transcription factor gene (DREB 1A) confers enhanced tolerance to drought. Int J Adv Biotechnol Res 5(4):635–648

    Google Scholar 

  • An X, Liao Y, Zhang J, Dai L, Zhang N, Wang B, Liu L, Peng D (2015) Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regul 76(2):211–223

    Article  CAS  Google Scholar 

  • An D, Ma Q, Yan W, Zhou W, Liu G, Zhang P (2016) Divergent regulation of CBF regulon on cold tolerance and plant phenotype in cassava overexpressing Arabidopsis CBF3 Gene. Front Plant Sci 7:1866

    PubMed  PubMed Central  Google Scholar 

  • Anbazhagan K, Bhatnagar-Mathur P, Vadez V, Dumbala SR, Kavi Kishor PB, Sharma KK (2015) DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep 34(2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Arroyo-Herrera A, Figueroa-Yanez L, Castano E, Santamarıa J, Pereira-Santana A, Espadas-Alcocer J, Sanchez-Teyer F, Espadas-Gil F, Alcaraz LD, Lopez-Gomez R, Sanchez-Calderon L, Rodrıguez-Zapata LC (2016) A novel Dreb2-type gene from Carica papaya confers tolerance under abiotic stress. Plant Cell Tissue Organ Cult 125(1):119–133

    Article  CAS  Google Scholar 

  • Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34(2):247–263

    Article  CAS  PubMed  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kahler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt promoted senescence. Plant J 62:250–264

    Article  CAS  PubMed  Google Scholar 

  • Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP, Roeber MB (2011) ORS1, an H2O2-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant 4(2):346–360

    Google Scholar 

  • Ban Q, Liu G, Wang Y (2011) A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. J Plant Physiol 168(5):449–458

    Article  CAS  PubMed  Google Scholar 

  • Basu U (2012) Identification of molecular processes underlying abiotic stress plants adaptation using “omics” technologies. In: Benkeblia N (ed) Sustainable Agricul-ture and new Technologie. CRC Press, Boca Raton, pp 149–172

    Google Scholar 

  • Behnam B, Kikuchi A, Celebi-Toprak F, Yamanaka S, Kasuga M, Kazuko Y, Watanabe KN (2006) The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum L.) Plant Biotechnol 23:169–177

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea) increases transpiration efficiency. Plant Cell Rep 26(12):2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Rao JS, Vadez V, Dumbala SR, Rathore A, Yamaguchi-Shinozaki K, Sharma KK (2014) Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33:327–340

    Article  CAS  Google Scholar 

  • Bihani P, Char B, Bhargava S (2011) Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149:95–101

    Article  CAS  Google Scholar 

  • Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Fisher R, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-eda S, Lee BH, Michalowski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song CP, Tanaka Y, Wang H, Zhu JK (2001) A genomic approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311

    Article  CAS  Google Scholar 

  • Bouaziz D, Pirrello J, Amor BH, Hammami A, Charfeddine M, Dhieb A, Bouzayen M, GargouriBouzid R (2012) Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiol Biochem 60:98–108

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz D, Pirrello J, Charfeddine M, Hammami A, Jbir R, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2013) Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Mol Biotechnol 54(3):803–817

    Article  CAS  PubMed  Google Scholar 

  • Bouaziz D, Charfeddine M, Jbir R, Saidi MN, Pirrello J, Charfeddine S, Bouzayen M, Gargouri-Bouzid R (2015a) Identification and functional characterization of ten AP2/ERF genes in potato. Plant Cell Tissue Organ Cult 123(1):155–172

    Article  CAS  Google Scholar 

  • Bouaziz D, Jbir R, Charfeddine S, Saidi MN, Gargouri R (2015b) The StDREB1 transcription factor is involved in oxidative stress response and enhances tolerance to salt stress. Plant Cell Tissue Organ Cult 121(1):237–248

    Article  CAS  Google Scholar 

  • Bouaziz D, Charfeddine S, Jbir R, Hammami A, Kamoun L, Gargouri-Bouzid R (2017) Effects of phosphogypsum on the growth of potato plants overexpressing the StDREB1 transcription factor. Plant Cell Tiss Organ Cult 130:1–11

    Article  CAS  Google Scholar 

  • Bowman JL (2000) The YABBY gene family and abaxial cell fate. Curr Opin Plant Biol 3:17–22

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Eshed Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends Genet 18:134–141

    Article  CAS  PubMed  Google Scholar 

  • Byun MY, Lee J, Cui LH, Kang Y, Oha TK, Park H, Lee H, Kim WT (2015) Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Sci 236:61–74

    Article  CAS  PubMed  Google Scholar 

  • Celebi-Toprak F, Behnam B, Serrano G, Kasuga M, Yamaguchi-Shinozaki K, Naka H, Watanabe JA, Yamanaka S, Watanabe KN (2005) Tolerance to salt stress of the transgenic tetrasomic tetraploid potato, Solanum tuberosum cv. Desiree appears to be induced by the DREB1A gene and rd29A promoter of Arabidopsis thaliana. Breed Sci 55:310–319

    Article  Google Scholar 

  • Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810

    Article  CAS  PubMed  Google Scholar 

  • Charfeddine M, Charfeddine S, Bouaziz D, Messaoud RB, Bouzid RG (2017) The effect of cadmium on transgenic potato (Solanum tuberosum) plants overexpressing the StDREB transcription factors. Plant Cell Tissue Organ Cult 128(3):521–541

    Article  CAS  Google Scholar 

  • Chaves MM, Costa JM, Saibo NJM (2011) Recent advances in photosynthesis under drought and salinity. Adv Bot Res 57:50–83

    Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG (2007) GmDREB2, a soybean DRE binding transcription factor, conferred drought and high salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    Article  CAS  PubMed  Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Overexpression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30(12):2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y (2009a) Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.) J Exp Bot 60(1):121–135

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xia X, Yin W (2009b) Expression profiling and functional characterization of a DREB2 type gene from Populus euphratica. Biochem Biophys Res Commun 378:483–487

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xia X, Yin W (2009c) Expression profiling and functional characterization of a DREB2- type gene from Populus euphratica. Biochem Biophys Res Commun 378:483–487

    Article  CAS  PubMed  Google Scholar 

  • Chen JR, Lu JJ, Liu R, Xiong XY, Wang TX, Chen SY (2010) DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China rose (Rosa chinensis Jacq.) Plant Growth Regul 60:199–211

    Article  CAS  Google Scholar 

  • Chen J, Xia X, Yin W (2011) A poplar DRE binding protein gene, PeDREB2L, is involved in regulation of defense response against abiotic stress. Gene 483(12):36–42

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang Y, Lv B, Li J, Luo L, Lu S (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu L, Wang L, Wang S, Cheng X (2016) VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high salt tolerance in transgenic Arabidopsis thaliana. J Plant Res 129:263–273

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Hui L, Li L, Chen SX, Li L (2015) Overexpression of NnDREB2, isolated from lotus improves salt tolerance in transgenic Arabidopsis thaliana. Acta Physiol Plant 37:261–272

    Article  CAS  Google Scholar 

  • Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH, Kim JK (2009) The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. Plant J 59(5):764–776

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Chai T, Zhang Y (2008) Characterization of the novel gene BjDREB1B encoding a DRE binding transcription factor from Brassica juncea L. Biochem Biophys Res Commun 371(4):702–706

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Jing Y, Wu X, Cong X, Jingjuan Y (2014) An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65(18):5415–5427

    Article  CAS  Google Scholar 

  • Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R (2011) Induced overexpression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49(12):1384–1391

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Ann Rev Plant Biol 61:651–679

    Article  CAS  Google Scholar 

  • Datta K, Niranjan B, Moumita G, Sellapna K, Yamaguchi-Shinozaki K, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10:579–586

    Article  CAS  PubMed  Google Scholar 

  • De Clercq I, Vermeirssen V, Aken OV, Vandepoele K, Murcha MW, Law SR, Inze A, Ng S, Ivanova A, Rombaut D, Cotte BV, Jaspers P, Peer YV, Kangasjarvi J, Whelan J, Breusegema FV (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25:3472–3490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Paiva Rolla AA, de Fatima Correa Carvalho J, FugantiPagliarini R, Engels C, do Rio A, Marin SR, de Oliveira MC, Beneventi MA, Marcelino-Guimaraes FC, Farias JR, Neumaier N, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL (2014) Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Res 23(1):75–87

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S (2003) OsDREB genes in rice (Oryza sativa L.) encode transcription activators that function in drought, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Duval M, Hsieh TF, Kim SY, Thomas TL (2002) Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain super family. Plant Mol Biol 50:237–248

    Article  CAS  PubMed  Google Scholar 

  • Engels C, Fuganti-Pagliarini R, Marin SR, Marcelino-Guimaraes FC, Oliveira MC, Kanamori N, Mizoi J, Nakashima K, Yamaguchi-Shinozaki K, Nepomuceno AL (2013) Introduction of the rd29A:AtDREB2A CA gene into soybean (Glycine max L. Merril) and its molecular characterization in leaves and roots during dehydration. Genet Mol Res 36(4):556–565

    CAS  Google Scholar 

  • Ernst HA, Olsen AN, Larsen S, Lo-Leggio L (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Gen Genomics 280:547–563

    Article  CAS  Google Scholar 

  • Fang Y, Liao K, Du H, Xu Y, Song H, Li X, Xiong L (2015a) A stress responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66:6803–6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang ZW, Xu XY, Gao JF, Wang PK, Liu ZX, Feng BL (2015b) Characterization of FeDREB1 promoter involved in cold and drought-inducible expression from common buckwheat (Fagopyrum esculentum). Genet Mol Res 14(3):7990–8000

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants-where next? Aust J Plant Physiol 22:876–884

    Article  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28:301–311

    Article  CAS  PubMed  Google Scholar 

  • Garapati P, Xue GP, Munne-Bosch S, Balazadeh S (2015) Transcription factor ATAF1 in Arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol 168(3):1122–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour SJ, Hajela RK, Thomashow MF (1998) Cold acclimation in Arabidopsis thaliana. Plant Physiol 87:745–750

    Article  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y (2008) Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20:1217–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover A, Kapoor A, Laksmi OS, Agarwal S, Sahi C, Katiyar-Agarwal S, Agarwal M, Dubey H (2001) Understanding molecular alphabets of the plant abiotic stress responses. Curr Sci 80(2):206–216

    CAS  Google Scholar 

  • Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunapati S, Naresh R, Ranjan S, Nigam D, Hans A, Verma PC, Gadre R, Pathre UV, Sane AP, Sane VA (2016) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Chen X, Wu X, Ling J, Xu P (2004) Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55:607–618

    Article  CAS  PubMed  Google Scholar 

  • Gupta K, Jha B, Agarwal PK (2014) A dehydration-responsive element binding (DREB) transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco. Mar Biotechnol 16(6):657–673

    Article  CAS  PubMed  Google Scholar 

  • Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68(6):533–555

    Article  CAS  PubMed  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68(2):302–313

    Article  CAS  PubMed  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44(6):903–916

    Article  CAS  PubMed  Google Scholar 

  • Hichri I, Muhovski Y, Clippe A, Zizkova E, Dobrev PI, Motyka V, Lutts S (2016) SlDREB2, a tomato dehydration-responsive element-binding2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant Cell Environ 39:62–79

    Article  CAS  PubMed  Google Scholar 

  • Hong B, Tong Z, Ma N, Li J, Kasuga M, Yamaguchi-Shinozaki K, Gao J (2006) Heterologous expression of the AtDREB1A gene in Chrysanthemum increases drought and salt stress tolerance. Sci China C Life Sci 49:436–445

    Article  CAS  PubMed  Google Scholar 

  • Hong B, Ma C, Yang Y, Wang T, Yamaguchi-Shinozaki K, Gao J (2009) Over-expression of AtDREB1A in Chrysanthemum enhances tolerance to heat stress. Plant Mol Biol 70:231–240

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Dai M, Yao J, Li BX, Zhang XQ (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang L, Hong Y, Zhang H, Li D, Song F (2016) Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol 16:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hussain Z, Ali S, Hayat Z, Zia MA, Iqbal A, Ali GM (2014) Agrobacterium mediated transformation of DREB1A gene for improved drought tolerance in rice cultivars (Oryza sativa L.) Aust J Crop Sci 8(7):1114–1123

    CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M (2006) Functional analysis of rice DREB1/CBF type transcription factors involved in cold responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17(1):93–104

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426:183–196

    Article  CAS  PubMed  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi YD, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought condition. Plant Physiol 153:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang X, Zhang C, Lu P, Jiang G, Liu X, Dai F, Gao J (2014a) RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals. Plant Biotechnol J 12:38–48

    Article  CAS  PubMed  Google Scholar 

  • Jiang QY, Hu Z, Zhang H, Ma YZ (2014b) Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity. Crop J 2:120–131

    Article  Google Scholar 

  • Jiang L, Wang Y, Zhang S, He R, Li W, Han J, Cheng X (2016) Tomato SlDREB1 gene conferred the transcriptional activation of drought induced gene and an enhanced tolerance of the transgenic Arabidopsis to drought stress. Plant Growth Regul 81(1):131–145

    Article  CAS  Google Scholar 

  • Jin T, Chang Q, Li W, Yin D, Li Z, Wang D, Liu B, Liu L (2010) Stress inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell Tissue Organ Cult 100(2):219–227

    Article  CAS  Google Scholar 

  • Jun-Wei W, Feng-Ping Y, Xu-Qing C, Rong-Qi L, Li-Quan Z, Dong-Mei G, Xiao-Dong Z, Ya-Zhen S, Gai-Sheng Z (2006) Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat. Acta Genet Sin 33(5):468–476

    Article  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Kazuko Y (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  CAS  PubMed  Google Scholar 

  • Katerji N, Van Horn JW, Hamdy A, Mastrorilli M (2003) Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric Water Manag 62:37–66

    Article  Google Scholar 

  • Katerji N, Van Horn JW, Hamdy A, Mastrorilli M (2004) Comparison of corn yield response to plant water stress caused by salinity and drought. Agric Water Manag 65:95–101

    Article  Google Scholar 

  • Kavar T, Maras M, Kidric M, Sustar-Vozlic J, Meglic V (2007) Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol Breed 21:159–172

    Article  CAS  Google Scholar 

  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Nang MPSH, Yasunari F, Sachiko S, Kazuo S, Kazuko Y (2015) Soybean DREB1/CBF type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81(3):505–518

    Article  CAS  PubMed  Google Scholar 

  • Kilian J, Peschke F, Berendzen KW, Harter K, Wanke D (2012) Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. Biochim Biophys Acta 1819:166–175

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Jung YSH, Bang SW, Choi YD, Ha SH, Reuzeau C, Mark CFR, Jin S, Jeong R (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Kim JK (2009) Rice transcription factor transcription factor AP37 involved in grain yield increase under drought stress. Plant Signal Behav 4:735–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Sakuraba Y, Han SH, Yoo SC, Paek NC (2013) Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence. Plant Cell Physiol 54:1660–1672

    Article  CAS  PubMed  Google Scholar 

  • Kjaersgaard T, Jensen MK, Christiansen MW, Gregersen P, Kragelund BB, Skriver K (2011) Senescenceassociated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with radical-induced cell death 1 through a disordered regulatory domain. J Biol Chem 286:35418–35429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi F, Ishibashi M, Takumi S (2008) Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Res 17(5):755–767

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk N, Jia W, Eini O, Morran S, Pyvovarenko T, Fletcher S, Bazanova N, Harris J, BeckOldach K, Shavrukov Y, Langridge P, Lopato S (2013) Optimization of TaDREB3 gene expression in transgenic barley using cold inducible promoters. Plant Biotechnol J 11:659–670

    Article  CAS  PubMed  Google Scholar 

  • Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR, Shinozaki K, Yamaguchi-Shinozaki K (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Huh KW, An K, An G, Kim SR (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.) Mol Cell 18:107–114

    CAS  Google Scholar 

  • Lee HE, Shin D, Park SR, Han SE, Jeong MJ, Kwon TR, Lee SK, Park SC, Yi BY, Kwon HB, Byun MO (2007) Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants. Biochem Biophys Res Commun 353:863–868

    Article  CAS  PubMed  Google Scholar 

  • Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, Jung H, Kim YS, Ha SH, Choi YD, Kim JK (2017) The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnol J 15:754–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Cheng X, Liu J, Zeng H, Han L, Tang W (2011) Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnol Rep 5(1):61–69

    Article  Google Scholar 

  • Li JT, Wang N, Xin HP, Li SH (2013) Overexpression of VaCBF4, a transcription factor from Vitis amurensis, improves cold tolerance accompanying increased resistance to drought and salinity in Arabidopsis. Plant Mol Biol Report 31:1518–1528

    Article  CAS  Google Scholar 

  • Li X, Zhang D, Li H, Wang Y, Zhang Y, Wood AJ (2014) EsDREB2B, a novel truncated DREB2 type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol 14:44–59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Zhang Y, Guo Q, Yao W (2017) Molecular characterization of a DREB gene from Sophora moorcroftiana, an endemic species of plateau. Protoplasma 254(4):1735–1741

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Guo X, Wang Q, Wang Y, Zhao D, Yao L, Wang S, Liu G, Li T (2017) Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J 89(3):510–526

    Article  CAS  PubMed  Google Scholar 

  • Lim CJ, Hwang JE, Chen H, Hong JK, Yang KA, Choi MS, Lee KO, Chung WS, Lee SY, Lim CO (2007) Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermo-tolerance. Biochem Biophys Res Commun 362:431–436

    Article  CAS  PubMed  Google Scholar 

  • Lina X, Ming C, Dong-hong M, Lu F, Zhao-shi X, Yongbin Z, Dong-bei X, Lian-cheng L, You-zhi M, Xiao-hong Z (2016) The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. J Integr Agric 15:60345–60347

    Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Goda H, Shimada Y, Yoshida S, Shinozaki K, Kazuko Y (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:391–406

    Google Scholar 

  • Liu N, Zhong N, Wang G, Li L, Liu X, He Y, Xia G (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE binding transcription factor from Physcomitrella patens. Planta 226:827–838

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hong L, Li XY, Yao Y, Hu B, Li L (2011a) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotechnol Biochem 75:443–450

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Yang J, Li HY (2011b) Cloning of a vacuolar H+ pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol 53:731–742

    CAS  PubMed  Google Scholar 

  • Liu QL, Xu KD, Zhao LJ, Pan YZ, Jiang BB, Zhang HQ, Liu GL (2011c) Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett 33:2073–2082

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63:3899–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Liu S, Wu J, Zhang B, Li X, Yan Y (2013) Overexpression of Arachis hypogea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging. Plant Physiol Biochem 70:354–359

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wg XC (2007) A novel drought inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289–305

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Ying S, Zhang DF, Shi YS, Song YC, Wang TY (2012) A maize stress-responsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis. Plant Cell Rep 31:1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Lv Z, Wang S, Zhang F, Chen L, Hao X, Pan Q, Fu X, Li L, Sun X, Tang K (2016) Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant Cell Physiol 57(9):1961–1971

    Article  CAS  PubMed  Google Scholar 

  • Magnani E, Sjolander K, Hake S (2004) From endonuclease to transcription factors: Evolution of the AP2 DNA binding domain in plants. Plant Cell 16:2265–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.) Biotechnol Lett 33:1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran L-SP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Zhang H, Qian X, Zhao AG, Jing R (2012) TaNAC2, a NAC type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63(8):2933–2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Chen S, Li A, Zhai C, Jing R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9(1):e84359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao H, Yu L, Han R, Li Z, Liu H (2016) ZmNAC55, a maize stress responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiol Biochem 105:55–66

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Kazuko Y (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. The. Plant J 38:982–993

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Maiko EN, Kawashima MN, Nakajima SMM, Kim MJ, Kobayashi N, Toyoda T, Shinozaki S, Seki M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49(8):1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Gen Genomics 283:185–196

    Article  CAS  Google Scholar 

  • Meiru L, Yan L, Hongqing L, Guojiang W (2012) Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. Tree Physiol 32(1):104–113

    Article  CAS  Google Scholar 

  • Meng C, Cai C, Zhang T, Guo W (2009) Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. Plant Sci 176(3):352–359

    Article  CAS  Google Scholar 

  • Mishra S, Phukan UJ, Tripathi V, Singh DK, Luqman S, Shukla RK (2015) PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco. Plant Mol Biol 89:173–186

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2011) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  PubMed  CAS  Google Scholar 

  • Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K, Kusakabe K, Osakabe Y, Shinozaki K, Kazuko Y (2013) GmDREB2A: a canonical DREB2-type transcription factor in soybean is post-translationally regulated and mediates DRE-dependent gene expression. Plant Physiol 161(1):346–361

    Article  CAS  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9(2):230–249

    Article  CAS  PubMed  Google Scholar 

  • Movahedi S, Tabatabaei BES, Alizade H, Ghobadi C, Yamchi A, Khaksar G (2012) Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. Biol Plant 56:37–42

    Article  CAS  Google Scholar 

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Negi S, Tak H, Ganapathi TR (2016) Expression analysis of MusaNAC68 transcription factor and its functional analysis by overexpression in transgenic banana plants. Plant Cell Tissue Organ Cult 125(1):59–70

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Satoh K, Kondoh H, Hosaka A, Kikuchi S (2012) A genome-wide survey of the NAC transcription factor family in monocots and eudicots. In: Introduction to genetics–DNA methylation, histone modification and gene regulation. iConcept Press, Hong Kong. isbn:ISBN, 978- 14775549-4-4

    Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:1–15

    Article  Google Scholar 

  • Oakenfull RJ, Baxter R, Knight MR (2013) A Crepeat binding factor transcriptional activator (CBF/DREB1) from European bilberry (Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana. PLoS One 8(1):e54119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80:135–139

    Article  CAS  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Lo Leggio L, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:1360–1385

    Article  CAS  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  CAS  PubMed  Google Scholar 

  • Pandurangaiah M, Lokanadha Rao G, Sudhakarbabu O, Nareshkumar A, Kiranmai K, Lokesh U, Thapa G, Sudhakar C (2017) Overexpression of horsegram (Macrotyloma uniflorum Lam.Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol Biotechnol 56(8):758–769

    Article  CAS  Google Scholar 

  • Paul A, Muoki RC, Singh K, Kumar S (2012) CsNAM-like protein encodes a nuclear localized protein and responds to varied cues in tea (Camellia sinensis L. O. Kuntze). Gene 502:69–74

    Article  CAS  PubMed  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JG, Ma H (2009) Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally and stress-regulated. Plant Physiol Biochem 47:1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Guo C, Yang J, Xu M, Zuo J, Bao M, Zhang J (2016) Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell Tissue Organ Cult 126(3):373–385

    Article  CAS  Google Scholar 

  • Polizel AM, Medri ME, Nakashima K, Yamanaka N, Farias JR, de Oliveira MC, Marin SR, Abdelnoor RV, Marcelino-Guimaraes FC, Fuganti R, Rodrigues FA, StolfMoreira R, Beneventi MA, Rolla AA, Neumaier N, YamaguchiShinozaki K, Carvalho JF, Nepomuceno AL (2011) Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genet Mol Res 10(4):3641–3656

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Bahadur RP, Srivastava PS, Prasad M (2011) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.] Mol Biotechnol 49:138–150

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Kazuko Y (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold responsive gene expression in maize (Zea mays L.) Plant Cell Physiol 45:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stress in Zea mays L. Plant J 50:54–59

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 5:1569–1582

    Article  CAS  Google Scholar 

  • Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R (2016) Over-expression of a NAC67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramegowda V, Senthil-Kumar M, Nataraja KN, Reddy MK, Mysore KS, Udayakumar M (2012) Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance. PLoS One 7:e40397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC, Viraktamath BC, Balachandran SM (2014) Stress inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res 23(3):421–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2012) The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J 10:792–805

    Article  CAS  PubMed  Google Scholar 

  • Reis RR, Cunha BADB, Martins PK, Martins MTB, Alekcevetch JC Júnior AC, Andradec AC Ribeiroa AP, Qin F, Mizoie J, Kazuko YS, Nakashima K, Carvalho JFC, Sousaa CAF, Nepomuceno AL, Kobayashia AK, Molinaria HBC (2014) Induced overexpression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci, 221 & 222:59–68

    Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol J 12:468–479

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae. Plant Physiol 147:280–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saad AS, Li X, Li HP, Huang T, Gao CS. Guo MW (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203 & 204:33–40

    Google Scholar 

  • Sadhukhan A, Kobayashi Y, Kobayashi Y, Tokizawa M, Yamamoto YY, Iuchi S, Koyama H, Panda SK, Sahoo L (2014) VuDREB2A, a novel DREB2 type transcription factor in the drought tolerant legume cowpea, mediates DRE dependent expression of stress responsive genes and confers enhanced drought resistance in transgenic Arabidopsis. Planta 240(3):645–664

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Kazuko Y (2006a) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Kazuko Y (2006b) Dual function of an Arabidopsis transcription factor DREB2A in water-stress responsive and heat-stress-responsive gene expression. PNAS USA 103:18822–18827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samara Reddy S, Singh B, Peter AJ, Rao TV (2016) Production of transgenic local rice cultivars (Oryza sativa L.) for improved drought tolerance using agrobacterium mediated transformation. Saudi J Biol Sci. https://doi.org//10.1016/j.sjbs.2016.01.035

  • Savitch LV, Allard G, Seki M, Robert LS, Tinker NA, Huner NPA, Shinozaki K, Singh J (2005) The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol 46:1525–1539

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant J 31(3):279–292

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Kamei A, Satou M, Sakurai T, Fujita M, Oono Y, Yamaguch-Shinozaki K, Shinozaki K (2003) Transcriptome analysis in abiotic stress conditions in higher plants. Topics. Curr Genet 4:271–295

    Article  Google Scholar 

  • Shah SH, Ali S, Hussain Z, Jan SA, Din JU, Ali GM (2016) Genetic improvement of tomato (Solanum lycopersicum) with AtDREB1A gene for cold stress tolerance using optimized Agrobacterium-mediated transformation system. Int J Agric Biol 18:471–482

    Article  CAS  Google Scholar 

  • Shahnejat-Bushehri S, Mueller-Roeber B, Balazadeh S (2012) Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermo-memory associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signal Behav 7:1518–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plants multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Shen J, Lv B, Luo L, He J, Mao C, Xi D, Ming F (2017) The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice. Sci Rep 7:40641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress tolerance and response. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shiqing G, Huijan X, Xianguo C, Ming C, Zhaosi X, Liancheng L, Xingguo Y, Lipu D, Xiaoyan H, Youzhi M (2005) Improvement of wheat drought and salt tolerance by expression of a stress inducible transcription factor GmDREB of soybean (Glycine max). Chin Sci Bull 50:2714–2723

    Article  Google Scholar 

  • Shukla RK, Raha S, Tripathi V, Chattopadhyay D (2006) Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiol 142:113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla RK, Tripathi V, Jain D, Yadav RK, Chattopadhyay D (2009) CAP2 enhances germination of transgenic tobacco seeds at high temperature and promotes heat stress tolerance in yeast. FEBS J 276:5252–5262

    Article  CAS  PubMed  Google Scholar 

  • Sindhu A, Chintamanani S, Brandt AS, Zanis M, Scofield SR, Johal GS (2008) A guardian of grasses: specific origin and conservation of a unique disease-resistance gene in the grass lineage. Proc Natl Acad Sci U S A 105:1762–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skriver K, Podzimska-Sroka D, O’Shea C, Gregersen PL (2015) NAC transcription factors in senescence: from molecular structure to function in crops. Plants 4:412–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345

    Article  CAS  PubMed  Google Scholar 

  • Souer E, Van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  CAS  PubMed  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Peng X, Fan W, Tanga M, Liua J, Shena S (2014a) Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene 535(2):140–149

    Article  CAS  PubMed  Google Scholar 

  • Sun ZM, Zhou ML, Xiao XG, Tang YX, Wu YM (2014b) Overexpression of a Lotus corniculatus AP2/ERF transcription factor gene, LcERF080, enhances tolerance to salt stress in transgenic Arabidopsis. Plant Biotechnol Report 8(4):315–324

    Article  Google Scholar 

  • Tak H, Negi S, Ganapathi TR (2017) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254(2):803–816

    Article  CAS  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Gen Genomics 284:173–183

    Article  CAS  Google Scholar 

  • Tan DX, Tuong HM, Thuy VTT, Son LV, Mau CH (2015) Cloning and overexpression of gmDREB2 gene from a Vietnamese drought resistant soybean variety. Braz Arch Biol Technol 58(5):651–657

    Article  CAS  Google Scholar 

  • Tang M, Liu X, Deng H, Shena S (2011) Over-expression of JcDREB, a putative AP2/EREBP domain-containing transcription factor gene in woody biodiesel plant Jatropha curcas, enhances salt and freezing tolerance in transgenic Arabidopsis thaliana. Plant Sci 181:623–631

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Liu M, Gao S, Zhang Z, Zhao X, Zhao C (2012) Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant 144:210–224

    Article  CAS  PubMed  Google Scholar 

  • Tang GY, Shao FX, Xu PL, Shan L, Liu ZJ (2017a) Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco. Russ J Plant Physiol 64(4):525–535

    Article  CAS  Google Scholar 

  • Tang Y, Liu K, Zhang J, Li X, Xu K, Zhang Y, Qi J, Yu D, Wang J, Li C (2017b) JcDREB2, a physic nut AP2/ERF gene, alters plant growth and salinity stress responses in transgenic rice. Front Plant Sci 8:306

    PubMed  PubMed Central  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S (2017) NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J:1–13

    Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Tian Z, He Q, Wang H, Liu Y, Zhang Y, Shao F, Xie C (2015) The potato ERF transcription factor StERF3 negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. Plant Cell Physiol 56:992–1005

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Chen J, Wang D, Wang H, Liu C, Wang S, Xia X, Yin W (2017) Over expression of a Populus euphratica CBF4 gene in poplar confers tolerance to multiple stresses. Plant Cell Tissue Organ Cult 128(2):391–407

    Article  CAS  Google Scholar 

  • Tong Z, Hong B, Yang Y, Li Q, Ma N, Ma C (2009) Overexpression of two Chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol Biol 71:115–129

    Article  CAS  PubMed  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JMI, Chueng F (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Plant Biotechnol 17(2):113–122

    Article  CAS  Google Scholar 

  • Wang CT, Dong YM (2009) Overexpression of maize ZmDBP3 enhances tolerance to drought and cold stress in transgenic Arabidopsis plants. Biologia 64(6):1108–1114

    CAS  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Dong J, Liu Y, Gao H (2010) A novel dehydration responsive element binding protein from Caragana korshinskii is involved in the response to multiple abiotic stresses and enhances stress tolerance in transgenic tobacco. Plant Mol Biol Report 28(4):664–675

    Article  CAS  Google Scholar 

  • Wang X, Chen X, Liu Y, Gao H, Wang Z, Sun G (2011a) CkDREB gene in Caragana korshinskii is involved in the regulation of stress response to multiple abiotic stresses as an AP2/EREBP transcription factor. Mol Biol Rep 38:2801–2811

    Article  CAS  PubMed  Google Scholar 

  • Wang CT, Yang Q, Wang CT (2011b) Isolation and functional characterization of ZmDBP2 encoding a dehydration responsive element-binding protein in Zea mays. Plant Mol Biol Report 29(1):60–68

    Article  CAS  Google Scholar 

  • Wang CT, Yang Q, Yang YM (2011c) Characterization of the ZmDBP4 gene encoding a CRT/DRE binding protein responsive to drought and cold stress in maize. Acta Physiol Plant 33(2):575–583

    Article  CAS  Google Scholar 

  • Wang K, Zhong M, Wu Y, Bai Z, Liang Q, Liu Q, Pan Y, Zhang L, Jiang B, Jia Y, Liu G (2017a) Overexpression of a Chrysanthemum transcription factor gene DgNAC1 improves the salinity tolerance in Chrysanthemum. Plant Cell Rep 36(4):571–581

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Hu Z, Zhu M, Zhu Z, Hu J, Qanmber G, Chen G (2017b) The abiotic stress responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.) Plant Cell Tissue Organ Cult 129(1):161–174

    Article  CAS  Google Scholar 

  • Wang L, Li Z, Lu M, Wang Y (2017c) ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Front Plant Sci 8:635

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterer D, Benning NT, Wu G, Luo X, Liu X, Gusta M, McHughen A, Gusta LV (2010) Evaluation of abiotic stress tolerance of genetically modified potatoes (Solanum tuberosum cv. Desiree). Mol Breed 25(3):527–540

    Article  CAS  Google Scholar 

  • Wei T, Deng K, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C, Zhang Y (2016a) Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth. Plant Physiol Biochem 104:1728

    Article  CAS  Google Scholar 

  • Wei T, Deng K, Liu D, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Song W, Chen C, Zhang Y (2016b) Ectopic expression of DREB transcription factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant Cell Physiol 57(8):1593–1609

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Deng K, Zhang Q, Gao Y, Liu Y, Yang M, Zhang L, Zheng X, Wang C, Liu Z, Chen C, Zhang Y (2017) Modulating AtDREB1C expression improves drought tolerance in Salvia miltiorrhiza. Front Plant Sci 8:52

    PubMed  PubMed Central  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Folta KM, Xie Y, Jiang W, Lu J, Zhang Y (2017) Overexpression of Muscadinia rotundifolia CBF2 gene enhances biotic and abiotic stress tolerance in Arabidopsis. Protoplasma 254(1):239–251

    Article  CAS  PubMed  Google Scholar 

  • Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS (2010) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep 37:3703–3712

    Article  CAS  PubMed  Google Scholar 

  • Xianjun P, Xingyong M, Weihong F, Man S, Liqin C, Alam I (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Xie Q, Frugis G, Colgan D, Chua N (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Fang Y, Liao K, Du H, Xu Y, Song H, Li X (2015) A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. J Exp Bot 66(21):6803–6817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiu Y, Iqbal A, Zhu C, Wu G, Chang Y, Li N, Cao Y, Zhang W, Zeng H, Chen S, Wang H (2016) Improvement and transcriptome analysis of root architecture by overexpression of Fraxinus pennsylvanica DREB2A transcription factor in Robinia pseudoacacia L. ‘Idaho’. Plant Biotechnol J 14(6):1456–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY (2009) Isolation and functional characterization of HvDREB1, a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res 122:121–130

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Li L, Fan Y, Wan J, Wang L (2011) ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa L.) without yield penalty. Plant Cell Rep 30:1949–1957

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Gongbuzhaxi CW, Xue F, Zhang H, Ji W (2015) Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiol Biochem 96:356–363

    Article  CAS  PubMed  Google Scholar 

  • Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4(4):697–712

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Wang YY, Peng RH, Zhen JL, Gao B, Zhu JJ, Zhao W, Han HJ, Yao QH (2014) Transcription factor MdCBF1 gene increases freezing stress tolerance in transgenic Arabidopsis thaliana. Biol Plant 58:499–506

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Liu XD, Chi XJ, Wu CA, Li YZ, Song LL, Liu XM, Wang YF, Wang FW, Zhang C (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA dependent and ABA independent pathways. Planta 233(2):219–229

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang X, Lu J, Yi Z, Fu C, Ran J (2015) Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis. Plant Cell Rep 34:943–958

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Ma Q, Zhu Z, Cui Q, Chen C, Chen X, Fang W, Li X (2016) Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regul 80(3):335–343

    Article  CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • You J, Zong W, Li X, Ning J, Hu H, Li X (2013) The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot 64:569–583

    Article  CAS  PubMed  Google Scholar 

  • Yu CL, Abu S, Xu L, He-Ping L, Tao H, Chun-Sheng G, Mao-Wei G, Wei C, Guang-Yao Z (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203 & 204:33–40

    Google Scholar 

  • Yu X, Liu Y, Wang S, Tao Y, Wang Z, Mijiti A, Wang Z, Zhang H, Ma H (2016) A chickpea stress responsive NAC transcription factor, CarNAC5, confers enhanced tolerance to drought stress in transgenic Arabidopsis. Plant Growth Regul 79(2):187–197

    Article  CAS  Google Scholar 

  • Zhai Y, Wang Y, Li Y, Lei T, Yan F, Su L, Li X, Zhao Y, Sun X, Li J, Wang Q (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513:174–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field: Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH (2009) Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high salt tolerance in transgenic Arabidopsis. Biochem Mol Biol Rep 42:486–492

    CAS  Google Scholar 

  • Zhang X, Tang Y, Ma Q, Yang C, Mu Y, Suo H (2013) OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS One 8(12):83011–83020

    Article  CAS  Google Scholar 

  • Zhang X, Liu X, Wu L, Yu G, Wang X, Ma H (2015) The SsDREB transcription factor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco. Int J Genomics (15):1–13

    Google Scholar 

  • Zhang W, Yang G, Mu D, Li H, Zang D, Xu H, Zou X, Wang Y (2016a) An ethylene-responsive factor BpERF11 negatively modulates salt and osmotic tolerance in Betula platyphylla. Sci Rep 6:23085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang L, Xia C, Zhao G, Jia J, Kong X (2016b) the novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Sci 6:1174

    PubMed  PubMed Central  Google Scholar 

  • Zhao JS, Ren W, Zhi DY, Wang L, Xia GM (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep 26(9):1521–1528

    Article  CAS  PubMed  Google Scholar 

  • Zhao XJ, Lei HJ, Zhao K, Yuan HZ, Li TH (2012) Isolation and characterization of a dehydration responsive element binding factor MsDREBA5 in Malus sieversii Roem. Sci Hortic 142:212–220

    Article  CAS  Google Scholar 

  • Zhao K, Shen X, Yuan H, Liu Y, Liao X, Wang Q, Liu L, Li F, Li T (2013) Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem. Plant Cell Physiol 54(9):1415–1430

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Yang X, Pei S, He G, Wang X, Tang Q, Jia C, Lud Y, Hu R, Zhou G (2016) The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis. Gene 586(1):158–169

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Guo QQ, Chen L, Ren F, Wang QQ, Zheng Y (2012) Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Rep 31:1991–2003

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Maa J, Zhao Y, Wei Y, Tanga Y, Wua Y (2012) Improvement of drought and salt tolerance in Arabidopsis thaliana and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 506(1):10–17

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014) The Abiotic stress responsive NAC type transcription factor SlNAC4 regulates salt and drought tolerance and stress related genes in tomato S. Lycopersicum. Plant Cell Rep 33(11):1851–1863

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Wang F, Xu ZS, Xiong AS (2015) Microarray analysis of different expression profiles between wild type and transgenic rice seedlings over expressing OsDREB1BI gene. Biologia 70(6):760–770

    Article  CAS  Google Scholar 

  • Zong JM, Li XW, Zhou YH, Wang FW, Wang N, Dong YY, Yuan YX, Chen H, Liu XM, Yao N, Li HY (2016) The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int J Mol Sci 17:611–625

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, M.K., Singh, A., Sengar, R.S. (2018). Bioengineering of DREB and NAC Transcriptional Factors for Enhanced Plant Tolerance Against Abiotic Stresses. In: Sengar, R., Singh, A. (eds) Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity. Springer, Singapore. https://doi.org/10.1007/978-981-10-6934-5_9

Download citation

Publish with us

Policies and ethics