Skip to main content

Bioformulation and Fluid Bed Drying: A New Approach Towards an Improved Biofertilizer Formulation

  • Chapter
  • First Online:
Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity

Abstract

Biofertilizers are now a popular term among agriculturists. Many improvements have been done in existing techniques, and many new techniques had evolved as well to enhance its effects on plant system. It is being used extensively for biocontrol and plant growth promotion. Bioformulation is one of the areas of prime research importance as it affects the effectiveness of inoculants. An effort has been made for further improvement in bioformulation with a vision of reducing contamination and enhancing shelf life. In this technique, fluid bed dryer (FBD) is widely used in food and drug industry. Fluidized drying by FBD also gives stress to the inoculants while constructing the formulation. This technique may have an important role in pre-exposing and hardening of inoculants to stress so that it can perform well upon application on harsh soil environment. This formulation has shown higher survival rates, reduced contamination and good plant response. FBD inoculant holds good with consortium of agriculturally beneficial microorganisms. It can be applied as seed inoculation and other popular delivery techniques. This technique can pave the way for a new kind of formulation and needs to improvise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achari GA, Ramesh R (2014) Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from Solanaceous crops. Int J Microbiol 2014(2014):296521. p 14

    PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Khan MS (2012) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86(9):945–950

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (2010) Biofertilizers: types, benefits and applications. www.biotecharticles.com/Agriculture-Article/Biofertilzers-Types-Benefits-and-Aplications-172.html

  • Arora NK, Khare E, Naraian R, Maheshwari DK (2008) Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repens. Curr Sci 95(1):90–94

    Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 97–116

    Chapter  Google Scholar 

  • Auffan M, Rose BJY, Lowry GV, Jolivet JP, Wiesner MR et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641

    Article  CAS  PubMed  Google Scholar 

  • Baca BE, Elmerich C (2007) Microbial production of plant hormones. In: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 113–143

    Chapter  Google Scholar 

  • Bailey KL, Boyetchko SM, Angle TL et al (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52(3):221–229

    Article  Google Scholar 

  • Bajpai PD, Gupta BF, Bambal IM (1978) Studies on survival of Rhizobium leguminosarum as affected by moisture and temperature conditions. Indian J Agric Res 12:39–43

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria use in agriculture. Biotech Adv 6:729–770

    Article  Google Scholar 

  • Bazilah ABI, Sariah M, Abidin MAZ et al (2011) Influence of carrier materials and storage temperature on survivability of Rhizobial inoculants. Asian J Plant Sci 10:331–337

    Article  Google Scholar 

  • Bharathi R, Vivekananthan R, Harish S (2004) Rhizobacteria-based bioformulations for the management of fruit rot infection in chillies. Crop Prot 23:835–843

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Brahmaprakash GP, Sahu PK (2012) Biofertilizers for sustainability. J Ind Inst Sci 92(1):37–62

    CAS  Google Scholar 

  • Brahmaprakash GP, Girisha HC, Navi V, Laxmipathy R, Hegde SV (2007) Liquid Rhizobium inoculant formulations to enhance biological nitrogen fixation in food legumes. J Food Legumes 20:75–79

    Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valero JR et al (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41:323–342

    Article  CAS  Google Scholar 

  • Chattannavar SN, Hosagoudar GN, Ashtaputre SA (2010) Chemical and biological management of major foliar diseases of cotton. Kar J Agric Sci 23(4):599–601

    Google Scholar 

  • Collins DP, Jacobsen B (2003) Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. J Biol Cont 26(2):153–161

    Article  Google Scholar 

  • Costa R, Cjotz M, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  CAS  PubMed  Google Scholar 

  • Dayamani KJ (2010) Formulation and determination of effectiveness of liquid inoculants of plant growth promoting rhizobacteria. Ph.D thesis, University of Agricultural Sciences, Bangalore, India

    Google Scholar 

  • Dayamani KJ, Brahmaprakash GP (2014) Influence of form and concentration of the osmolyte in liquid inoculants of plant growth promoting bacteria. Int J Sci Res Publ 4(7):1–6

    Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology – a review. Soil Biol Biochem 36:75–88

    Article  Google Scholar 

  • Dube JN, Mahere DP, Bawat AF (1980) Development of coal as a carrier for rhizobial inoculants. Sci Cult 46:304

    Google Scholar 

  • Ebrahimpour F, Eidizadeh KH, Damghani AM (2011) Sustainable nutrient management in maize with integrated application of biological and chemical fertilizers. Int J Agric Sci 1(7):423–426

    Google Scholar 

  • Emmert EA, Handelsman J (1999) Biocontrol of plant disease a (Gram) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Li Y, LiU Q (2013) Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum. Afr J Microbiol Res 7(15):1311–1318

    Article  Google Scholar 

  • Fuhrmann JJ, Wollum AG (1989) Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability. Biol Fertil Soil 7:108–112

    Article  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  PubMed  Google Scholar 

  • Gorzelak MA, Amanda KA, Pickles BJ, Simard SW (2015) Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB PLANTS. https://doi.org/10.1093/aobpla/plv050

  • Guijarro B, Melgarejo P, Decal A (2007) Effect of stabilizers on the shelf life of Penicillium frequentans conidia and their efficacy as a bioagent against peach brown rot. J Food Microbiol 113:117–124

    Article  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Haichar FEZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Hoffland E, Halilinen J, Van Pelt JA (1996) Comparison of systemic resistance induced by avirulent and non pathogenic Pseudomonas sp. Phytopathology 86:757–762

    Article  Google Scholar 

  • Islam TMD, Toyota K (2004) Suppression of bacterial wilt of tomato by Ralstonia solanacearum by incorporation of composts in soil and possible mechanisms. Microbes Environ 19(1):53–60

    Article  Google Scholar 

  • Iswaran V (1972) Growth and survival of Rhizobium trifoli in coir dust and soybean meal compost. Madras J Agric Sci 59:52–53

    Google Scholar 

  • Jinnah MA, Khalequzzaman KM, Islam MS (2002) Control of bacterial wilt of tomato by Pseudomonas fluorescens in the field. Pak J Biol Sci 5(11):1167–1169

    Article  Google Scholar 

  • Kandaswamy R, Prasad N (1971) Lignite as a carrier of rhizobia. Curr Sci 40:496

    Google Scholar 

  • Karthiba L, Saveetha K, Suresh S, Raguchander T, Saravanakumar D, Samiyappan R (2010) PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Manag Sci 66(5):555–564

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kumar V (2014) Characterization, bio-formulation development and shelf-life Studies of locally isolated bio-fertilizer strains. Octa J Environ Res 2(1):32–37

    Google Scholar 

  • Labroussaa F, Zeilinger AR, Almeida RPP (2016) Blocking the transmission of a noncirculative vector-borne plant pathogenic bacterium. MPMI 29(7):535–544

    Article  CAS  PubMed  Google Scholar 

  • Lavanya G, Sahu PK, Manikanta DS, Brahmaprakash GP (2015) Effect of fluid bed dried formulation in comparison with lignite formulation of microbial consortium on finger millet (Eleusine coracana Gaertn.) J Pure Appl Microbiol 9(2):193–199

    CAS  Google Scholar 

  • Lee SK, Lur HS, Lo KJ, Cheng KC, Chuang CC, Tang SJ, Yang ZW, Liu CT (2016) Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Appl Microbial Biotechnol 6:1–1

    Google Scholar 

  • Lwin M, Ranamukhaarachchi SL (2006) Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. Int J Agri Biol 8(5):657–660

    Google Scholar 

  • Madhok MR (1934) The use of soil as a medium for distributing legume organism culture to cultivators. Agric Livestock India 4:670–682

    CAS  Google Scholar 

  • Manjula K, Kishore GK, Girish AG, Singh SD (2004) Combined application of Pseudomonas fluorescens and Trichoderma viride has an improved biocontrol activity against stem rot in groundnut. Plant Pathol J 20(1):75–80

    Article  Google Scholar 

  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance promoting microbiome is selected by root system under desert farming. PLoS One 7:e48479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra BK, Dahich SK (2010) Methodology of nitrogen biofertilizer production. J Adv Dev Res 1:3–6

    Article  Google Scholar 

  • Monte E, Llobell A (2003) Trichoderma: In: Organic agriculture. V Congreso Mundial del Aguacate, pp 725–733

    Google Scholar 

  • Nakkeeran S, Kavitha K, Renukadevi P (2004) Induced systemic resistance and plant growth promotion by Pseudomonas chlororaphis strain PA–23 and Bacillus subtilis strain CBE4 against rhizome rot of turmeric (Curcuma longa L.) Can J Plant Pathol 26:417–418

    Google Scholar 

  • Nandakumar R, Babu S, Samiyappan R (2001) A new bio–formulation containing plant growth promoting rhizobacterial mixture for the management of sheath blight and enhanced grain yield in rice. Biol Control 46:493–510

    Google Scholar 

  • Nehra V, Choudhary M (2015) A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Nat Sci 7(1):540–556

    Google Scholar 

  • O’Callaghan M, Gerard EM (2005) Establishment of Serratia entomophila in soil from a granular formulation. In: New Zealand plant protection, vol 58, 2005. Proceedings of a conference, Wellington, New Zealand Plant Protection Society, pp 122–125

    Google Scholar 

  • Pandey V, Ansari MW, Tula S, Yadav S, Sahoo RK, Shukla N, Bains G, Badal S, Chandra S, Gaur AK, Kumar A, Shukla A, Kumar J, Tuteja N (2016) Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta 243:1251–1264

    Article  CAS  PubMed  Google Scholar 

  • Ponmurugan P, Gopi C (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr J Biotechnol 5(4):348–350

    CAS  Google Scholar 

  • Qi X, Xiaofeng S, Guo H, Qi J, Cheng H (2016) VdThit, a thiamine transport protein, is required for pathogenicity of the vascular pathogen Verticillium dahlia. MPMI 29(7):545–559

    Article  CAS  PubMed  Google Scholar 

  • Radjacommare R, Venkatesan S, Samiyappan R (2010) Biological control of phytopathogenic fungi of vanilla through lytic action of Trichoderma spp. and Pseudomonas fluorescens. Arch Phytopathol Plant Prot 43:1–17

    Article  CAS  Google Scholar 

  • Rajavel R (2000) Seed borne Colletotrichum capsici (Syd). Butter and Bisby and its management. M.Sc. thesis, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Sahu PK (2012) Development of Fluid Bed Dried (FBD) inoculant formulation of consortium of agriculturally important microorganisms (AIM). M.Sc. thesis, University of Agricultural Sciences, Bangalore, India

    Google Scholar 

  • Sahu PK, Brahmaprakash GP (2016) Formulations of biofertilizers–approaches and advances. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 179–198

    Chapter  Google Scholar 

  • Sahu PK, Lavanya G, Brahmaprakash GP (2013) Fluid bed dried microbial inoculants formulation with improved survival and reduced contamination level. J Soil Biol Ecol 33(1&2):81–94

    Google Scholar 

  • Sahu PK, Lavanya G, Gupta A, Brahmaprakash GP (2016a) Fluid bed dried microbial consortium for enhanced plant growth-a step towards next generation bioformulation. Vegetos, Ms. No. SciTech161098. https://doi.org/10.4172/2229-4473.1000165 (in press)

  • Sahu PK, Sharma L, Gupta A, Renu (2016b) Rhizospheric and endophytic beneficial microorganisms: treasure for biological control of plant pathogens. In: Santra S, Mallick A (eds) Recent biotechnological applications in India. ENVIS Centre on Environmental Biotechnology, University of Kalyani, West Bengal, pp 50–63

    Google Scholar 

  • Saravanakumar D, Vijayakumar C, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565

    Article  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Sharma MP, Sharma SK, Dwivedi A (2010) Liquid biofertilizer application in soybean and regulatory mechanisms. Agric Today 44–45

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR proceeding 109e. Australian Centre for International Agricultural Research, Canberra, pp 52–66

    Google Scholar 

  • Soares de Melo I, Montes Peral Valente AM, Nessner Kavamura V, Vilela D, Simoni E, Faull JL (2014) Mycoparasitic nature of Bionectria sp. strain 6.21. J Plant Prot Res 54(4):327–333

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  PubMed  PubMed Central  Google Scholar 

  • Sridhar V, Brahmaprakash GP, Hegde SV (2004) Development of a liquid inoculant using osmoprotectants for Phosphate solubilizing bacteria. Kar J Agric Sci 17:251–257

    Google Scholar 

  • Srivastava S, Mishra G (2010) Fluid bed technology: overview and parameters for process selection. Int J Pharm Sci Drug Res 2(4):236–246

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016) Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.) Int J Curr Microbiol App Sci 5(3):890–901

    Article  Google Scholar 

  • Surendra Gopal K, Baby A (2016) Enhanced shelf life of Azospirillum and PSB through addition of chemical additives in liquid formulations. Int J Sci Environ Technol 5(4):2023–2029

    Google Scholar 

  • Swapna G, Divya M, Brahmaprakash GP (2016) Survival of microbial consortium in granular formulations, degradation and release of microorganisms in soil. Ann Plant Sci 5(5):1348–1352

    Article  Google Scholar 

  • Takanashi K, Sasaki T, Kan T, Saida Y, Sugiyama A, Yamamoto Y, Yazaki K (2016) A dicarboxylate transporter, LjALMT4, mainly expressed in nodules of Lotus Japonicas. MPMI 29(7):584–592

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meena KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fertil Soils 47(8):907–916

    Article  CAS  Google Scholar 

  • Velineni S, Brahmaprakash GP (2011) Survival and phosphate solubilizing ability of Bacillus megaterium in liquid inoculants under high temperature and desiccation stress. J Agric Sci Tech 13:795–802

    CAS  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis 79:782–786

    Article  Google Scholar 

  • Walpola B, Yoon MH (2013) Phosphate solubilizing bacteria: assessment of their effect on growth promotion and phosphorous uptake of mung bean (Vigna radiata [L.] R. Wilczek). Chil J Agric Res 73(3):275–281

    Article  Google Scholar 

  • Yabuuchi E, Kosako Y, Yano L, Hotta H, Nishiuchi Y (1996) Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 46:625–626

    Article  Google Scholar 

  • Yadav AK (2009) Glimpses of fertilizer (Control) order, 1985 for biofertilizers (amendment, November 2009), National center for organic farming, Department of Agriculture and Cooperation, Government of India. Biofertilizer News 17(2):11–14

    Google Scholar 

  • Yan Q, Philmus B, Hesse C, Max K, Jeff HC, Joyce EL (2016) The rare codon AGA is involved in regulation of pyoluteorin biosynthesis in Pseudomonas protegens Pf-5. Front Microbiol. https://doi.org/10.3389/fmicb.2016.00497

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46:49–54

    Article  CAS  Google Scholar 

  • Zhang L, Fan J, Ding X, He X, Zhang F, Feng G (2014) Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem 74:177–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Mau, India, and Department of Agricultural Microbiology, University of Agricultural Sciences, Bengaluru, India, are gratefully acknowledged for continuous support and guidance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, P.K., Gupta, A., Singh, M., Mehrotra, P., Brahmaprakash, G.P. (2018). Bioformulation and Fluid Bed Drying: A New Approach Towards an Improved Biofertilizer Formulation. In: Sengar, R., Singh, A. (eds) Eco-friendly Agro-biological Techniques for Enhancing Crop Productivity. Springer, Singapore. https://doi.org/10.1007/978-981-10-6934-5_3

Download citation

Publish with us

Policies and ethics