Skip to main content

Ataxia-Telangiectasia and Nijmegen Breakage Syndrome

  • Chapter
  • First Online:
Book cover DNA Repair Disorders

Abstract

Ataxia-telangiectasia (A-T) and Nijmegen breakage syndrome (NBS) are well-known single-gene disorders, which have similar cellular phenotypes, including chromosome instability, radioresistant DNA synthesis, and hypersensitivity to radiation. Such phenotypic similarity implies direct physical association and/or functional interaction between respective gene products. Indeed, the NBS1 protein responsible for NBS interacts with ATM kinase implicated in A-T and regulates ATM activation upon DNA damage; however, NBS1-mediated homologous recombination does not seem to require ATM. Moreover, ATM is activated by oxidative stress independently of NBS1. Thus, ATM and NBS1 are likely to have distinct functions in radiation-induced DNA damage responses or other cellular responses to genomic stresses such as oxidative stress, which should underlie different clinical manifestations of A-T and NBS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boder E, Sedgwick RP. Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics. 1958;21:526–54.

    CAS  PubMed  Google Scholar 

  2. Gotoff SP, Amirmokri E, Liebner EJ. Ataxia telangiectasia. Neoplasia, untoward response to x-irradiation, and tuberous sclerosis. Am J Dis Child. 1967;114:617–25.

    Article  CAS  Google Scholar 

  3. McKinnon PJ. Ataxia-telangiectasia: an inherited disorder of ionizing-radiation sensitivity in man. Progress in the elucidation of the underlying biochemical defect. Hum Genet. 1987;75:197–208.

    Article  CAS  Google Scholar 

  4. Shiloh Y. Ataxia-telangiectasia: closer to unraveling the mystery. Eur J Hum Genet. 1995;3:116–38.

    Article  CAS  Google Scholar 

  5. Shiloh Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet. 1997;31:635–62.

    Article  CAS  Google Scholar 

  6. Hustinx TW, Scheres JM, Weemaes CM, et al. Karyotype instability with multiple 7/14 and 7/7 rearrangements. Hum Genet. 1979;49:199–208.

    Article  CAS  Google Scholar 

  7. Weemaes CM, Hustinx TW, Scheres JM, et al. A new chromosomal instability disorder: the Nijmegen breakage syndrome. Acta Paediatr Scand. 2000;70:557–64.

    Article  Google Scholar 

  8. The International Nijmegen Breakage Syndrome Study Group. Nijmegen breakage syndrome. Arch Dis Child. 2000;82:400–6.

    Article  Google Scholar 

  9. Chrzanowska KH, Gregorek H, Dembowska-Bagińska B, et al. Nijmegen breakage syndrome (NBS). Orphanet J Rare Dis. 2012;7:e13.

    Article  Google Scholar 

  10. Stewart GS, Maser RS, Stankovic T, et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell. 1999;99:577–87.

    Article  CAS  Google Scholar 

  11. Taylor AM, Groom A, Byrd PJ. Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis. DNA Repair (Amst). 2004;3:1219–25.

    Article  CAS  Google Scholar 

  12. Hernandez D, McConville CM, Stacey M, et al. A family showing no evidence of linkage between the ataxia telangiectasia gene and chromosome 1q22-23. J Med Genet. 1993;30:135–40.

    Article  CAS  Google Scholar 

  13. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268:1749–53.

    Article  CAS  Google Scholar 

  14. Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14:197–210.

    Article  CAS  Google Scholar 

  15. Lovejoy CA, Cortez D. Common mechanisms of PIKK regulation. DNA Repair. 2009;8:1004–8.

    Article  CAS  Google Scholar 

  16. Kong X, Shen Y, Jiang N, et al. Emerging roles of DNA-PK besides DNA repair. Cell Signal. 2011;23:1273–80.

    Article  CAS  Google Scholar 

  17. Nam EA, Cortez D. ATR signalling: more than meeting at the fork. Biochem J. 2011;436:527–36.

    Article  CAS  Google Scholar 

  18. Gobbini E, Cesena D, Galbiati A, et al. Interplays between ATM/Tel1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks. DNA Repair (Amst). 2013;12:791–9.

    Article  CAS  Google Scholar 

  19. Matsuura S, Tauchi H, Nakamura A, et al. Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet. 1998;19:179–81.

    Article  CAS  Google Scholar 

  20. Tauchi H, Matsuura S, Kobayashi J, et al. Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene. 2002;21:8967–80.

    Article  CAS  Google Scholar 

  21. Chamankhah M, Wei YF, Xiao W. Isolation of hMRE11B: failure to complement yeast mre11 defects due to species-specific protein interactions. Gene. 1998;225:107–16.

    Article  CAS  Google Scholar 

  22. Tauchi H, Kobayashi J, Morishima K, et al. The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50 hMRE11 NBS1 complex DNA repair activity. J Biol Chem. 2001;276:12–5.

    Article  CAS  Google Scholar 

  23. Barbi G, Scheres JMJC, Schindler D, et al. Chromosome instability and X-ray hypersensitivity in a microcephalic and growth-retarded child. Am J Med Genet. 1991;40:44–50.

    Article  CAS  Google Scholar 

  24. Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res. 2012;751:158–246.

    Article  CAS  Google Scholar 

  25. Fujimori A, Tachiiri S, Sonoda E, et al. Rad52 partially substitutes for the Rad51 paralog XRCC3 in maintaining chromosomal integrity in vertebrate cells. EMBO J. 2001;20:5513–20.

    Article  CAS  Google Scholar 

  26. Tauchi H, Kobayashi J, Morishima K, et al. Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature. 2002;420:93–8.

    Article  CAS  Google Scholar 

  27. Khanna KK, Beamish H, Yan J, et al. Nature of G1/S cell cycle checkpoint defect in ataxia-telangiectasia. Oncogene. 1995;11:609–18.

    CAS  PubMed  Google Scholar 

  28. Beamish H, Williams R, Chen P, et al. Defect in multiple cell cycle checkpoints in ataxia-telangiectasia postirradiation. J Biol Chem. 1996;271:20486–93.

    Article  CAS  Google Scholar 

  29. Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998;281:1674–7.

    Article  CAS  Google Scholar 

  30. Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998;281:1677–9.

    Article  CAS  Google Scholar 

  31. Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.

    Article  CAS  Google Scholar 

  32. Lim DS, Kim ST, Xu B, et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature. 2000;404:613–7.

    Article  CAS  Google Scholar 

  33. Zhao S, Weng YC, Yuan SS, et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature. 2000;405:473–7.

    Article  CAS  Google Scholar 

  34. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506.

    Article  CAS  Google Scholar 

  35. Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 2005;434:605–11.

    Article  CAS  Google Scholar 

  36. Crawford TO. Ataxia telangiectasia. Semin Pediatr Neurol. 1998;5:287–94.

    Article  CAS  Google Scholar 

  37. Shiloh Y, Lederman HM. Ataxia-telangiectasia (A-T): an emerging dimension of premature ageing. Ageing Res Rev. 2016;33:76–88. pii: S1568-1637(16)30078-30082.

    Article  Google Scholar 

  38. Gatti RA, Vinters HV. Cerebellar pathology in ataxia-telangiectasia: the significance of basket cells. Kroc Found Ser. 1985;19:225–32.

    CAS  PubMed  Google Scholar 

  39. Lavin MF. The appropriateness of the mouse model for ataxia-telangiectasia: neurological defects but no neurodegeneration. DNA Repair (Amst). 2013;12:612–9.

    Article  CAS  Google Scholar 

  40. Carlessi L, Fusar Poli E, De Filippis L, et al. ATM-deficient human neural stem cells as an in vitro model system to study neurodegeneration. DNA Repair (Amst). 2013;12:605–11.

    Article  CAS  Google Scholar 

  41. Reichenbach J, Schubert R, Schindler D, et al. Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal. 2002;4:465–9.

    Article  CAS  Google Scholar 

  42. Kamsler A, Daily D, Hochman A, et al. Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice. Cancer Res. 2001;61:1849–54.

    CAS  PubMed  Google Scholar 

  43. Guo Z, Kozlov S, Lavin MF, et al. ATM activation by oxidative stress. Science. 2010;330:517–21.

    Article  CAS  Google Scholar 

  44. Zhang J, Kim J, Alexander A, et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol. 2013;15:1186–96.

    Article  CAS  Google Scholar 

  45. Zhang J, Tripathi DN, Jing J, et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol. 2015;17:1259–69.

    Article  CAS  Google Scholar 

  46. Valentin-Vega YA, Maclean KH, Tait-Mulder J, et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood. 2012;119:1490–500.

    Article  CAS  Google Scholar 

  47. Valentin-Vega YA, Kastan MB. A new role for ATM: regulating mitochondrial function and mitophagy. Autophagy. 2012;8:840–1.

    Article  CAS  Google Scholar 

  48. Ambrose M, Goldstine JV, Gatti RA. Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet. 2007;16:2154–64.

    Article  CAS  Google Scholar 

  49. Gatti RA, Bick M, Tam CF, et al. Ataxia-telangiectasia: a multiparameter analysis of eight families. Clin Immunol Immunopathol. 1982;23:501–16.

    Article  CAS  Google Scholar 

  50. Nowak-Wegrzyn A, Crawford TO, Winkelstein JA, et al. Immunodeficiency and infections in ataxia-telangiectasia. J Pediatr. 2004;144:505–11.

    Article  Google Scholar 

  51. Taylor AM, Metcalfe JA, Thick J, et al. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87:423–38.

    CAS  PubMed  Google Scholar 

  52. Isoda T, Takagi M, Piao J, et al. Process for immune defect and chromosomal translocation during early thymocyte development lacking ATM. Blood. 2012;120:789–99.

    Article  CAS  Google Scholar 

  53. Dujka ME, Puebla-Osorio N, Tavana O, et al. ATM and p53 are essential in the cell- cycle containment of DNA breaks during V(D)J recombination in vivo. Oncogene. 2010;29:957–65.

    Article  CAS  Google Scholar 

  54. Murphy RC, Berdon WE, Ruzal-Shapiro C, et al. Malignancies in pediatric patients with ataxia telangiectasia. Pediatr Radiol. 1999;29:225–30.

    Article  CAS  Google Scholar 

  55. Olsen JH, Hahnemann JM, Borresen-Dale AL, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the Nordic countries. J Natl Cancer Inst. 2001;93:121–7.

    Article  CAS  Google Scholar 

  56. Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7.

    Article  CAS  Google Scholar 

  57. Schubert R, Reichenbach J, Zielen S. Growth factor deficiency in patients with ataxia telangiectasia. Clin Exp Immunol. 2005;140:517–9.

    Article  CAS  Google Scholar 

  58. Yang DQ, Kastan MB. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol. 2000;2:893–8.

    Article  CAS  Google Scholar 

  59. Miles PD, Treuner K, Latronica M, et al. Impaired insulin secretion in a mouse model of ataxia telangiectasia. Am J Physiol Endocrinol Metab. 2007;293:E70–4.

    Article  CAS  Google Scholar 

  60. Wu D, Yang H, Xiang W, et al. Heterozygous mutation of ataxia-telangiectasia mutated gene aggravates hypercholesterolemia in apoE-deficient mice. J Lipid Res. 2005;46:1380–7.

    Article  CAS  Google Scholar 

  61. Schneider JG, Finck BN, Ren J, et al. ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome. Cell Metab. 2006;4:377–89.

    Article  CAS  Google Scholar 

  62. Takagi M, Uno H, Nishi R, et al. ATM regulates adipocyte differentiation and contributes to glucose homeostasis. Cell Rep. 2015;10:957–67.

    Article  CAS  Google Scholar 

  63. Nakamura K, Kato A, Kobayashi J, et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell. 2011;41:515–28.

    Article  CAS  Google Scholar 

  64. Sakamoto S, Iijima K, Mochizuki D, et al. Homologous recombination repair is regulated by domains at the N- and C-terminus of NBS1 and is dissociated with ATM functions. Oncogene. 2007;26:6002–9.

    Article  CAS  Google Scholar 

  65. Kass EM, Helgadottir HR, Chen CC, et al. Double-strand break repair by homologous recombination in primary mouse somatic cells requires BRCA1 but not the ATM kinase. Proc Natl Acad Sci U S A. 2013;110:5564–9.

    Article  CAS  Google Scholar 

  66. Kijas AW, Lim YC, Bolderson E, et al. ATM-dependent phosphorylation of MRE11 controls extent of resection during homology directed repair by signalling through exonuclease 1. Nucleic Acids Res. 2015;43:8352–67.

    Article  CAS  Google Scholar 

  67. Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542–8.

    Article  CAS  Google Scholar 

  68. Shiotani B, Nguyen HD, Håkansson P, et al. Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Rep. 2013;3:1651–162.

    Article  CAS  Google Scholar 

  69. Morishima K, Sakamoto S, Kobayashi J, et al. TopBP1 associates with NBS1 and is involved in homologous recombination repair. Biochem Biophys Res Commun. 2007;362:872–9.

    Article  CAS  Google Scholar 

  70. Cox J, Jackson AP, Bond J, et al. What primary microcephaly can tell us about brain growth. Trends Mol Med. 2006;12:358–66.

    Article  CAS  Google Scholar 

  71. Zhang B, Wang E, Dai H, et al. Phosphorylation of the BRCA1 C terminus (BRCT) repeat inhibitor of hTERT (BRIT1) protein coordinates TopBP1 protein recruitment and amplifies ataxia telangiectasia-mutated and Rad3-related (ATR) signaling. J Biol Chem. 2014;289:34284–95.

    Article  CAS  Google Scholar 

  72. Shimada M, Sagae R, Kobayashi J, et al. Inactivation of the Nijmegen breakage syndrome gene leads to excess centrosome duplication via the ATR/BRCA1 pathway. Cancer Res. 2009;69:1768–75.

    Article  CAS  Google Scholar 

  73. Yanagihara H, Kobayashi J, Tateishi S, et al. NBS1 recruits RAD18 via a RAD6-like domain and regulates pol η-dependent translesion DNA synthesis. Mol Cell. 2011;43:788–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junya Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kobayashi, J. (2019). Ataxia-Telangiectasia and Nijmegen Breakage Syndrome. In: Nishigori, C., Sugasawa, K. (eds) DNA Repair Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-10-6722-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6722-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6721-1

  • Online ISBN: 978-981-10-6722-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics