Skip to main content

Design and Scale-up of High-solid and Multi-phase Bioprocess

  • Chapter
  • First Online:
High-solid and Multi-phase Bioprocess Engineering

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 506 Accesses

Abstract

The rheological properties in high-solid and multi-phase system are different from that of ordinary fluids because of the high solid content. Thus, there is new requirement for solid-state reactor and large-scale solid materials conveyor devices. In this chapter, the rheological characteristics of high-solid enzymatic hydrolysis system were analyzed and the transfer and seepage laws in the porous solid medium were revealed. Agitation and intensification methods for the high-solid and multi-phase system were also studied. Based on the above, the high-solid and multi-phase reactor and corresponding large-scale conveyor devices were developed, and prospect for the engineering application and development direction of the high-solid and multi-phase bioprocess in the future were provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings-a review. Biomass Bioenergy 56(38):526–544

    Article  CAS  Google Scholar 

  2. Um BH, Hanley TR (2008) A comparison of simple rheological parameters and simulation data for Zymomonasmobilis fermentation broths with high substrate loading in a 3-L bioreactor. Appl Biochem Biotechnol 145(1):29–38

    Article  CAS  PubMed  Google Scholar 

  3. Roche CM, Dibble CJ, Stickel JJ (2009) Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnol Biofuels 2(1):28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dasari RK, Dunaway K, Berson RE (2008) A scraped surface bioreactor for enzymatic saccharification of pretreated corn stover slurries. Energy Fuels 23(1):492–497

    Article  CAS  Google Scholar 

  5. Zhang J, Chu DQ, Huang J et al (2010) Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnol Bioeng 105(4):718–728

    PubMed  CAS  Google Scholar 

  6. Viamajala S, Mcmillan J, Schell D et al (2009) Rheology of corn stover slurries at high solids concentrations-Effects of saccharification and particle size. Bioresour Technol 100(2):925

    Article  CAS  PubMed  Google Scholar 

  7. Knutsen JS, Liberatore MW (2010) Rheology modification and enzyme kinetics of high-solids cellulosic slurries: an economic analysis. Energy Fuels 24(12):6506–6512

    Article  CAS  Google Scholar 

  8. Szijártó N, Horan E, Zhang JH et al (2011) Thermostableendoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnol Biofuels 4(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Liu YY, Xu JL et al (2011) High solid and low enzyme loading based saccharification of agriculutural biomass. BioResources 7(1):0345–0353

    CAS  Google Scholar 

  10. Zhao XB, Zhang LH, Liu DH (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuel BioprodBior 6(4):465–482

    Article  CAS  Google Scholar 

  11. Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment-a review. Biotechnol Bioeng 109:1430–1442

    Article  CAS  PubMed  Google Scholar 

  12. Koppram R, Tomás-Pejó E, Xiros C et al (2013) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trend Biotechnol 32(1):46–53

    Article  CAS  Google Scholar 

  13. Roberts KM, Lavenson DM, Tozzi EJ et al (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 18(3):759–773

    Article  CAS  Google Scholar 

  14. Felby C, Thygesen LG, Kristensen JB et al (2008) Cellulose–water interactions during enzymatic hydrolysis as studied by time domain NMR. Cellulose 15(5):703–710

    Article  CAS  Google Scholar 

  15. Selig MJ, Thygesen LG, Felby C (2014) Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification. Biotechnol Biofuels 7(1):1–10

    Article  CAS  Google Scholar 

  16. Selig MJ, Hsieh CW, Thygesen LG et al (2012) Considering water availability and the effect of solute concentration on high solids saccharification of lignocellulosic biomass. Biotechnol Progr 28(6):1478–1490

    Article  CAS  Google Scholar 

  17. Hodge DB, Karim MN, Schell DJ et al (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol 99(18):8940–8948

    Article  CAS  PubMed  Google Scholar 

  18. Berry SL, Roderick ML (2005) Plant–water relations and the fibre saturation point. New Phytol 168(1):25–37

    Article  CAS  PubMed  Google Scholar 

  19. Zhang H, Thygesen LG, Mortensen K et al (2014) Structure and enzymatic accessibility of leaf and stem from wheat straw before and after hydrothermal pretreatment. Botechnol Biofuels 7(1):74

    Article  CAS  Google Scholar 

  20. Elder T, Labbé N, Harper D et al (2006) Time domain-nuclear magnetic resonance study of chars from southern hardwoods. Biomass Bioenergy 30(10):855–862

    Article  CAS  Google Scholar 

  21. Liu W, Fan AW, Huang XM (2006) Theory and application of heat and mass transfer in porous media. Science Press, Beijing (in Chinese)

    Google Scholar 

  22. Muralidhar K, Swarup J (2007) Theoretical study of inter phase heat and mass transfer in saturated porous media. Int J Eng Sci 35(2):171–185

    Article  Google Scholar 

  23. Gu WC (2000) Seepage calculation principle and application. China Building Material Industry Publishing House, Beijing (in Chinese)

    Google Scholar 

  24. Wang XD (2006) Basis of seepage fluid mechanics. Petroleum Industry Press, Beijing (in Chinese)

    Google Scholar 

  25. Kong XY (2010) Advanced fluid mechanics in porous media. University Science and Technology of China Press, Beijing (in Chinese)

    Google Scholar 

  26. Bear J (2013) Dynamics of fluids in porous media. Courier Corporation, New York

    Google Scholar 

  27. Chai CJ, Zhang GL (2000) Flow and heat transfer of chemical engineering fluid. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  28. Jia SY, Chai JC (2005) Chemical mass transfer and separation process[M]. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  29. Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96(5):862–870

    Article  CAS  PubMed  Google Scholar 

  30. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Tends Biotechnol. 25(4):153–157

    CAS  Google Scholar 

  31. Aris R (2012) Vectors, tensors and the basic equations of fluid mechanics. Dover Publictions Inc., New York

    Google Scholar 

  32. Miller EE, Miller RD (1955) Theory of capillary flow: I. Practical implications. Soil SciSoc Am J 19(3):267–271

    Google Scholar 

  33. Zhao LG, Chu GZ, Bao CS (2002) Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Phys C 11(4):366 (in Chinese)

    Article  Google Scholar 

  34. Smith R (2005) Chemical process: design and integration. Wiley, New Jersey

    Google Scholar 

  35. Chen ZP, Zhang XW, Ling XH (2004) Handbook of stirring and mixing equipment design selection. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  36. Towler GP, Sinnott RK (2012) Chemical engineering design: principles, practice and economics of plant and process design. Elsevier, Amsterdam

    Google Scholar 

  37. Dautzenberg FM, Mukherjee M (2001) Process intensification using multifunctional reactors. Chem Eng Sci 56(2):251–267

    Article  CAS  Google Scholar 

  38. Reay D, Ramshaw C, Harvey A (2013) Process Intensification: Engineering for efficiency, sustainability and flexibility. Butterworth-Heinemann, Oxford

    Google Scholar 

  39. Stankiewicz AI, Moulijn JA (2000) Process intensification: transforming chemical engineering. Chem Eng Prog 96(1):22–34

    CAS  Google Scholar 

  40. Wang W, Zhuang XS, Yuan ZH et al (2012) High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour Technol 108(2):252–257

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Qin WJ, Paice MG et al (2009) High consistency enzymatic hydrolysis of hardwood substrates. Bioresour Technol 100(23):5890–5897

    Article  CAS  PubMed  Google Scholar 

  42. Sun ZC, Chen HZ, Wang YH et al (2006) Enzymatic hydrolysis of steam-treated straw using a ball shaker. J B Univ Chem Technol 33(6):26–30

    CAS  Google Scholar 

  43. Chen HZ, Li GH (2013) An industrial level system with non isothermal simultaneous solid state saccharification, fermentation and separation for ethanol production. Biochem Eng J 74:121–126

    Article  CAS  Google Scholar 

  44. Chen HZ, Liu ZH (2015) Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products. Biotechnol J 10:866–885

    Article  CAS  PubMed  Google Scholar 

  45. Wu ZQ (2006) Solid state fermentation technology and applications. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  46. Marcus RD, Leung LS, Klinzing GE et al (1993) Pneumatic conveying of solids: a theoretical and practical approach. Drying Technol 11(4):859–860

    Article  Google Scholar 

  47. Xu GR, Hu WF (2009) Fundamentals, equipment and applications of solid-state fermentation. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  48. Wen C, Wen T (2011) The design and innovation of air-cushion belt conveyor. Grain Distribution Technol 05:18–24 (in Chinese)

    Google Scholar 

  49. Saravacos GD, Kostaropoulos AE (2002) Handbook of food processing equipment. Springer Science & Business Media, Berlin/Heidelberg

    Book  Google Scholar 

  50. Holloway MD, Nwaoha C, Onyewuenyi OA (2012) Process plant equipment: operation, control, and reliability. Wiley, New Jersey

    Book  Google Scholar 

  51. Xie ZL (2001) Numerical simulation of pneumatic conveying. J B Univ Chem Technol 28(1):22–27

    Google Scholar 

  52. Klinzing GE, Rizk F, Marcus R et al (2011) Pneumatic conveying of solids: a theoretical and practical approach. Springer Science & Business Media, Berlin/Heidelberg

    Google Scholar 

  53. Chen HZ (2013) Modern Solid State Fermentation. Springer, Netherlands

    Book  Google Scholar 

  54. Zhang CF, Bai HM (2014) Space docking mechanism technology of spacecraft. Sci Sin Tech 44:20–26 (in Chinese)

    CAS  Google Scholar 

  55. Tan J (2011) Development on the four degree manipulation of the material handling. Wuhan University of Technology Institute of Electrical and Mechanical Services, Wuhan

    Google Scholar 

  56. Zhao ZM, Wang L, Chen HZ (2015) A novel steam explosion sterilization improving solid-state fermentation performance. Bioresource Technol 192:547–555

    Article  CAS  Google Scholar 

  57. Qi YZ, Wang SX (2007) Biological reaction kinetics and reactor. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  58. Zhang SL (2001) Study on the fermentation processes at multi-levels in bioreactor and its application for special purposes—ptimization and scaling up of the fermentation process based on the parameter correlation method. Eng Sci 3(8):37–45

    Google Scholar 

  59. Asenjo JA (1994) Bioreactor system design. CRC Press, Boca Raton

    Book  Google Scholar 

  60. Chen DY (2013) Some theoretical problems and applications of nonlinear dynamic analysis and control. Northwest Agriculture and Forestry University

    Google Scholar 

  61. Da MM, Muniz JB, Schuler A, Da MM (2004) Static magnetic fields enhancement of Saccharomyces cerevisaee than olic fermentation. Biotechnol Progr 20(1):393–396

    Google Scholar 

  62. Moore RL (1979) Biological effects of magnetic fields: studies with microorganisms Cana. J Microbiol 25(10):1145–1151

    CAS  Google Scholar 

  63. Ramon C, Martin JT, Powell MR (1987) Low-level, magnetic-field-induced growth modification of Bacillus subtili. Bioelectromagnetics 8(3):275

    Article  CAS  PubMed  Google Scholar 

  64. Haug RT (1993) The practical handbook of compost engineering. CRC Press, Boca Raton

    Google Scholar 

  65. Sanromán A, Roca E, Núñez MJ et al (1994) A pulsing device for packed-bed bioreactors: II. Application to alcoholic fermentation. Bioprocess Biosyst Eng 10(2):75–81

    Article  Google Scholar 

  66. Roca E, Sanromán A, Núñez MJ et al (1994) A pulsing device for packed-bed bioreactors: I Hydrodynamic behavior. Bioprocess Biosyst Eng 10(2):61–73

    Article  CAS  Google Scholar 

  67. Perez VH, Reyes AF, Justo OR et al (2007) Bioreactor coupled with electromagnetic field generator: Effects of Extremely Low Frequency Electromagnetic Fields on Ethanol Production by Saccharomyces cerevisiae. Biotechnol Progr 23(5):1091–1094

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H. (2018). Design and Scale-up of High-solid and Multi-phase Bioprocess. In: High-solid and Multi-phase Bioprocess Engineering. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6352-7_6

Download citation

Publish with us

Policies and ethics