Skip to main content

Photoelectron Holography

  • Chapter
  • First Online:
Compendium of Surface and Interface Analysis

Abstract

Optical holograms are widely used in our daily life. Three-dimensional structural information is recorded in an optical hologram based on the wave nature of light, and we can see the 3D image on the hologram. Similarly, 3D atomic arrangements can be recorded using the electron wave. When an atom is excited with an X-ray, a photoelectron is emitted. The photoelectron from a localized core level is an excellent element-specific probe for the analysis of atomic structure. Information on the photoelectron-emitting atom and the surrounding atomic configuration is recorded as a photoelectron hologram in the photoelectron intensity angular distribution (Szöke et al. in AIP Conf Proc 147, 361–367 1986 [1]). Photoelectron holography is a technique for deriving real-space atomic structures from photoelectron diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Szöke, A.: In Short Wavelength Coherent Radiation: Generation and Applications, AIP. Conf. Proc. 147, 361–367 (1986)

    Google Scholar 

  2. Matsushita, T., Yoshigoe, A., Agui, A.: Electron holography: a maximum entropy reconstruction scheme. Europhys. Lett. 71, 597–603 (2005). Matsushita, T., Guo, F.Z., Matsui, F., Kato, Y., Daimon, H.: Three-dimensional atomic-arrangement reconstruction from an Auger-electron hologram. Phys. Rev. B. 75, 085419 (2007). Matsushita, T., Guo, F.Z., Suzuki, M., Matsui, F., Daimon, H., Hayashi, K.: Reconstruction algorithm for atomic-resolution holography using translational symmetry. Phys. Rev. B. 78, 144111 (2008). Matsushita, T., Matsui, F., Daimon, H., Hayashi, K.: “Photoelectron holography with improved image reconstruction.” J. Electron. Spectrosc. Relat. Phenom. 178–179, 195–220 (2010)

    Google Scholar 

  3. Matsushita, T.: Atomic Image Reconstruction from Atomic Resolution Holography Using L1-Regularized Linear Regression. e-J. Surf. Sci. Nanotech. 14, 158–160 (2016)

    Article  Google Scholar 

  4. Matsui, F., Eguchi, R., Nishiyama, S., Izumi, M., Uesugi, E., Goto, H., Matsushita, T., Sugita, K., Daimon, H., Hamamoto, Y., Hamada, I., Morikawa, Y., Kubozono, Y.: Photoelectron holographic atomic arrangement imaging of cleaved bi metal-intercalated graphite superconductor surface. Sci. Rep. 6, 36258 (2016)

    Article  CAS  Google Scholar 

  5. Matsushita, T., Matsui, F., Goto, K., Matsumoto, T., Daimon, H.: Element assignment for three-dimensional atomic imaging by photoelectron holography. J. Phys. Soc. Jpn. 82, 114005 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Matsushita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsushita, T., Matsui, F. (2018). Photoelectron Holography. In: The Surface Science Society of Japan (eds) Compendium of Surface and Interface Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-10-6156-1_74

Download citation

Publish with us

Policies and ethics