Skip to main content

Physicomechanical Properties and Utilization of Hydrogels Prepared by Physical and Physicochemical Crosslinking

  • Chapter
  • First Online:
Polymer Gels

Abstract

Research concerning physical hydrogels, their morphological characteristics, swelling ability, and related mechanical properties is of increasing significance over last fifteen years due to their controllable degradability and desirable biocompatibility. Additionally, it is very important that physical crosslinking methods such as freeze-thaw cycling, heat treatment, ionic interactions, hydrophobic interactions, hydrogen bonding interactions, self-assembly stereocomplexation as well as other non-covalent interactions do not require use of chemical crosslinking agents which may induce allergic or toxic side effects. Physical crosslinked hydrogels have found their applications so far in pharmaceutical and medical areas. The engineering applications of physical hydrogels are still limited due to low mechanical toughness and short-term stability. This review explores mainly used physical crosslinking methods with examples of polymers crosslinkable with physical junctions. Special focus is given to methods improving mechanical rigidity of physical hydrogels based on anionic polysaccharides and poly(vinyl alcohol).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Mohsen AM, Aly AS, Hrdina R, Montaser AS, Hebeish A (2011) Eco-synthesis of PVA/Chitosan hydrogels for biomedical application. J Polym Environ 19(4):1005–1012

    Article  CAS  Google Scholar 

  • Ahearne M, Yang Y, El Haj AJ, Then KY, Liu K-K (2005) Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface 2(5):455–463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27(9):2414–2425

    Article  CAS  Google Scholar 

  • Bagri LP, Bajpai J, Bajpai AK (2009) Cryogenic designing of biocompatible blends of polyvinyl alcohol and starch with macroporous architecture. J Macromol Sci Part A: Pure Appl Chem 46(11):1060–1068

    Article  CAS  Google Scholar 

  • Bajpai AK, Saini R (2006) Preparation and characterization of novel biocompatible cryogels of poly(vinyl alcohol) and egg-albumin and their water sorption study. J Mater Sci: Mater Med 17(1):49–61

    CAS  Google Scholar 

  • Bani-Jaber A, Kobayashi A, Yamada K, Haj-Ali D, Uchimoto T, Iwao Y, Noguchi S, Itai S (2015) A newly developed lubricant, chitosan laurate, in the manufacture of acetaminophen tablets. Int J Pharm (Amsterdam Neth) 483(1–2):49–56

    CAS  Google Scholar 

  • Bouklas N, Landis CM, Huang R (2015) A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels. J Mech Phys Solids 79:21–43

    Article  CAS  Google Scholar 

  • Canillas M, de Lima GG, Rodriguez MA, Nugent MJD, Devine DM (2016) Bioactive composites fabricated by freezing-thawing method for bone regeneration applications. J Polym Sci Part B: Polym Phys 54(7):761–773

    Article  CAS  Google Scholar 

  • Cappello J, Crissman JW, Crissman M, Ferrari FA, Textor G, Wallis O, Whitledge JR, Zhou X, Burman D, Aukerman L, Stedronsky ER (1998) In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. J Control Release 53(1–3):105–117

    Article  PubMed  CAS  Google Scholar 

  • Cerchiara T, Luppi B, Bigucci F, Orienti I, Zecchi V (2002) Physically cross-linked chitosan hydrogels as topical vehicles for hydrophilic drugs. J Pharm Pharmacol 54(11):1453–1459

    Article  PubMed  CAS  Google Scholar 

  • Chen N-X, Zhang J-H (2010) The role of hydrogen-bonding interaction in poly(vinyl alcohol)/poly(acrylic acid) blending solutions and their films. Chin J Polym Sci 28(6):903–911

    Article  CAS  Google Scholar 

  • Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Bodugoz-Senturk H, Kung HJ, Malhi AS, Muratoglu OK (2006) Effects of solvent dehydration on creep resistance of poly(vinyl alcohol) hydrogel. Biomaterials 28(5):772–780

    Article  PubMed  CAS  Google Scholar 

  • Chun HJ, Lee SB, Nam SY, Ryu SH, Jung SY, Shin SH, Cheong SI, Rhim JW (2005) Preparation and swelling behavior of thermally cross-linked poly(vinyl alcohol) and poly(acrylic acid) hydrogel. J Ind Eng Chem (Seoul Repub Korea) 11(4):556–560

    CAS  Google Scholar 

  • de Jong SJ, De Smedt SC, Wahls MWC, Demeester J, Kettenes-van den Bosch JJ, Hennink WE (2000) Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 33(10):3680–3686

    Article  CAS  Google Scholar 

  • De SK, Aluru NR, Johnson B, Crone WC, Beebe DJ, Moore J (2002) Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. J Microelectromech Syst 11(5):544–555

    Article  CAS  Google Scholar 

  • Drexler PG, Tesoro G (1984) Materials and processes for textile warp sizing. CRC Press

    Google Scholar 

  • Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim Y-J, Narain R, Idota N, Hoffman JM (2014) Smart biomaterials. Springer, p 9

    Google Scholar 

  • El Salmawi KM (2007) Application of polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) hydrogel produced by conventional crosslinking or by freezing and thawing. J Macromol Sci Part A Pure Appl Chem 44(6):619–624

    Article  CAS  Google Scholar 

  • Funami T, Hiroe M, Noda S, Asai I, Ikeda S, Nishinari K (2007) Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocoll 21(4):617–629

    Article  CAS  Google Scholar 

  • Fundueanu G, Nastruzzi C, Carpov A, Desbrieres J, Rinaudo M (1999) Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 20(15):1427–1435

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg VV, Sammler RL, Huang W, Larson RG (2016) Anisotropic self-assembly and gelation in aqueous methylcellulose-theory and modeling. J Polym Sci Part B: Polym Phys (Ahead of Print)

    Google Scholar 

  • Goetten de Lima G, Campos L, Junqueira A, Devine DM, Nugent MJD (2015) A novel pH-sensitive ceramic-hydrogel for biomedical applications. Polym Adv Technol 26(12):1439–1446

    Article  CAS  Google Scholar 

  • Gregorova A, Lahti J, Schennach R, Stelze F (2013) Humidity response of Kraft papers determined by dynamic mechanical analysis. Thermochim Acta 570:33–40

    Article  CAS  Google Scholar 

  • Gregorova A, Saha N, Kitano T, Saha P (2015) Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging. Carbohydr Polym 117:559–568

    Article  PubMed  CAS  Google Scholar 

  • Grundelova L, Gregorova A, Mracek A, Vicha R, Smolka P, Minarik A (2015) Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide. Carbohydr Polym 119:142–148

    Article  PubMed  CAS  Google Scholar 

  • Guan Y, Zhang B, Bian J, Peng F, Sun R-C (2014) Nanoreinforced hemicellulose-based hydrogels prepared by freeze-thaw treatment. Cellulose (Dordrecht Neth) 21(3):1709–1721

    CAS  Google Scholar 

  • Gudeman LF, Peppas NA (1995) pH-Sensitive membranes from poly(vinyl alcohol)/poly(acrylic acid) interpenetrating networks. J Membr Sci 107(3):239–248

    Article  CAS  Google Scholar 

  • Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11):2370–2379

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Goswami S, Sinha A (2012) A combined effect of freeze-thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Biomed Mater (Bristol UK) 7(1):015006/015001–015006/015008

    Google Scholar 

  • Hago E-E, Li X (2013) Interpenetrating polymer network hydrogels based on gelatin and PVA by biocompatible approaches: synthesis and characterization. Adv Mater Sci Eng 328763, 328769 pp

    Google Scholar 

  • Hassan CM, Peppas NA (2000a) Structure and applications of Poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153(Biopolymers, PVA Hydrogels Anionic Polymerisation Nanocomposites):37–65

    Article  CAS  Google Scholar 

  • Hassan CM, Peppas NA (2000b) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33(7):2472–2479

    Article  CAS  Google Scholar 

  • Hassani LN, Hendra F, Bouchemal K (2012) Auto-associative amphiphilic polysaccharides as drug delivery systems. Drug Discov Today 17(11–12):608–614

    Article  PubMed  CAS  Google Scholar 

  • Hennink WE, Van Nostrum CF (2005) Stereocomplex hydrogels with tunable degradation times. Universiteit Utrecht, Neth. WO2005054318A1, p 30

    Google Scholar 

  • Hennink WE, Van Nostrum CF, De Jong SJ (2000) Stereocomplex hydrogels. Universiteit Utrecht, Neth. WO2000048576A1, p 65

    Google Scholar 

  • Herrmann WO, Haehnel W (1928) Polymerized vinyl alcohol. Consortium fur elektrochemische Industrie, US1672156

    Google Scholar 

  • Hickey AS, Peppas N (1997) Solute diffusion in poly(vinyl alcohol)/poly(acrylic acid) composite membranes prepared by freezing/thawing techniques. Polymer 38(24):5931–5936

    Article  CAS  Google Scholar 

  • Ibrahim SM, El Salmawi KM (2013) Preparation and properties of carboxymethyl cellulose (CMC)/sodium alginate (SA) blends induced by gamma irradiation. J Polym Environ 21(2):520–527

    Article  CAS  Google Scholar 

  • Jaspers M, Dennison M, Mabesoone MFJ, MacKintosh FC, Rowan AE, Kouwer PHJ (2014) Ultra-responsive soft matter from strain-stiffening hydrogels. Nat Commun 5:5808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature (London) 388(6645):860–862

    Article  CAS  Google Scholar 

  • Jeong B, Choi YK, Bae YH, Zentner G, Kim SW (1999) New biodegradable polymers for injectable drug delivery systems. J Control Release 62(1–2):109–114

    Article  PubMed  CAS  Google Scholar 

  • Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release 63(1–2):155–163

    Article  PubMed  CAS  Google Scholar 

  • Jevne AH, Vegoe BR, Holmblad CM, Cahalan PT (1986) Hydrophilic pressure sensitive biomedical adhesive composition. Medtronic, Inc., USA, p 5 (US4593053A)

    Google Scholar 

  • Kamoun EA, Kenawy E-RS, Tamer TM, El-Meligy MA, Mohy Eldin MS (2015) Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arabian J Chem 8(1):38–47

    Article  CAS  Google Scholar 

  • Kanaya T, Ohkura M, Takeshita H, Kaji K, Furusaka M, Yamaoka H, Wignall GD (1995) Gelation process of poly(vinyl alcohol) as studied by small-angle neutron and light scattering. Macromolecules 28(9):3168–3174

    Article  CAS  Google Scholar 

  • Kanaya T, Takeshita H, Nishikoji Y, Ohkura M, Nishida K, Kaji K (1998) Micro- and mesoscopic structure of poly(vinyl alcohol) gels determined by neutron and light scattering. Supramol Sci 5(3–4):215–221

    Article  Google Scholar 

  • Kang CE, Poon PC, Tator CH, Shoichet MS (2009) A new paradigm for local and sustained release of therapeutic molecules to the injured spinal cord for neuroprotection and tissue repair. Tissue Eng Part A 15(3):595–604

    Article  PubMed  CAS  Google Scholar 

  • Khutoryanskiy V, Khutoryanskaya O, Cook JP, Goodall GW (2011) Hydrogel synthesis by crosslinking of hydrophilic polymers. The University of Reading, UK, p 33 (WO2011089432A1)

    Google Scholar 

  • Kilan K, Warszynski P (2014) Thickness and permeability of multilayers containing alginate cross-linked by calcium ions. Electrochim Acta 144:254–262

    Article  CAS  Google Scholar 

  • Kovalcik A (2015) Project report for the project: F-AF2-638-0. Hydrogels based on microbially treated lignin. Initial Funding Programm of Graz University of Technology

    Google Scholar 

  • Kumeta K, Nagashima I, Matsui S, Mizoguchi K (2003) Crosslinking reaction of poly(vinyl alcohol) with poly(acrylic acid) (PAA) by heat treatment: effect of neutralization of PAA. J Appl Polym Sci 90(9):2420–2427

    Article  CAS  Google Scholar 

  • Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grondahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8(8):2533–2541

    Article  CAS  Google Scholar 

  • Li W, Sun B, Wu P (2009) Study on hydrogen bonds of carboxymethyl cellulose sodium film with two-dimensional correlation infrared spectroscopy. Carbohydr Polym 78(3):454–461

    Article  CAS  Google Scholar 

  • Liang H-F, Hong M-H, Ho R-M, Chung C-K, Lin Y-H, Chen C-H, Sung H-W (2004) Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromol 5(5):1917–1925

    Article  CAS  Google Scholar 

  • Lin H-L, Liu W-H, Liu Y-F, Cheng C-H (2002) Complexation equilibrium constants of poly(vinyl alcohol)-borax dilute aqueous solutions—consideration of electrostatic charge repulsion and free ions charge shielding effect. J Polym Res 9(4):233–238

    Article  CAS  Google Scholar 

  • Liu L-S, Liu S-Q, Ng SY, Froix M, Ohno T, Heller J (1997) Controlled release of interleukin-2 for tumor immunotherapy using alginate/chitosan porous microspheres. J Control Release 43(1):65–74

    Article  CAS  Google Scholar 

  • Mahanta N, Teow Y, Valiyaveettil S (2013) Viscoelastic hydrogels from poly(vinyl alcohol)-Fe(iii) complex. Biomater Sci 1(5):519–527

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Mousanezhad S, Hosseinzadeh H, Darvishi F, Sabzi M (2016) Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption. Carbohydr Polym 147:379–391

    Article  PubMed  CAS  Google Scholar 

  • Mateescu A, Wang Y, Dostalek J, Jonas U (2012) Thin hydrogel films for optical biosensor applications. Membranes (Basel Switz) 2:40–69

    CAS  Google Scholar 

  • McCrum NG, Read BE, Williams G (1968) Anelastic and dielectric effects in polymeric solids. Wiley, New York

    Google Scholar 

  • Mohammed JS, Murphy WL (2009) Bioinspired design of dynamic materials. Adv Mater (Weinheim Ger) 21(23):2361–2374

    Article  CAS  Google Scholar 

  • Montembault A, Viton C, Domard A (2004) Physico-chemical studies of the gelation of chitosan in a hydroalcoholic medium. Biomaterials 26(8):933–943

    Article  CAS  Google Scholar 

  • Mueller SA, Weis C, Odermatt EK, Knaebel H-P, Wente MN (2011) A hydrogel for adhesion prevention: characterization and efficacy study in a rabbit uterus model. Eur J Obstet Gynecol Reprod Biol 158(1):67–71

    Article  CAS  Google Scholar 

  • Nugent MJD, Higginbotham CL (2006) Investigation of the influence of freeze-thaw processing on the properties of polyvinyl alcohol/polyacrylic acid complexes. J Mater Sci 41(8):2393–2404

    Article  CAS  Google Scholar 

  • Nugent MJD, Hanley A, Tomkins PT, Higginbotham CL (2005) Investigation of a novel freeze-thaw process for the production of drug delivery hydrogels. J Mater Sci: Mater Med 16(12):1149–1158

    CAS  Google Scholar 

  • Ohkura M, Kanaya T, Kaji K (1992) Gelation rates of poly(vinyl alcohol) solution. Polymer 33(23):5044–5048

    Article  CAS  Google Scholar 

  • Okay O (2015) Self-Healing Hydrogels Formed via Hydrophobic Interactions. Adv Polym Sci 268(Supramolecular Polymer Networks and Gels):101–142

    Article  CAS  Google Scholar 

  • Oniki T, Ishiguro K (2000) Dentifrices containing polyvinyl alcohol hydrogels. Lion Corp., Japan, p 8 (JP2000159646A)

    Google Scholar 

  • Petka WA, Hardin JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science (Washington DC) 281(5375):389–392

    Article  CAS  Google Scholar 

  • Pezron E, Leibler L, Lafuma F (1989) Complex formation in polymer-ion solutions. 2. Polyelectrolyte effects. Macromolecules 22(6):2656–2662

    Article  CAS  Google Scholar 

  • Popa-Nita S, Alcouffe P, Rochas C, David L, Domard A (2010) Continuum of structural organization from chitosan solutions to derived physical forms. Biomacromol 11(1):6–12

    Article  CAS  Google Scholar 

  • Qiao K, Zheng Y, Guo S, Tan J, Chen X, Li J, Xu D, Wang J (2015) Hydrophilic nanofiber of bacterial cellulose guided the changes in the micro-structure and mechanical properties of nf-BC/PVA composites hydrogels. Compos Sci Technol 118:47–54

    Article  CAS  Google Scholar 

  • Rajagopal K, Ozbas B, Pochan DJ, Schneider JP (2006) Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. Eur Biophys J 35(2):162–169

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi R, Gaillet C, Ducouret G, Lafuma F, Laupretre F (2003) Investigation of the relationships between the chain organization and rheological properties of atactic poly(vinyl alcohol) hydrogels. Polymer 44(11):3375–3380

    Article  CAS  Google Scholar 

  • Roy N, Saha N, Humpolicek P, Saha P (2010a) Permeability and biocompatibility of novel medicated hydrogel wound dressings. Soft Mater 8(4):338–357

    Article  CAS  Google Scholar 

  • Roy N, Saha N, Kitano T, Saha P (2010b) Development and characterization of novel medicated hydrogels for wound dressing. Soft Mater 8(2):130–148

    Article  CAS  Google Scholar 

  • Roy N, Saha N, Kitano T, Saha P (2010c) Novel hydrogels of PVP-CMC and their swelling effect on viscoelastic properties. J Appl Polym Sci 117(3):1703–1710

    CAS  Google Scholar 

  • Ruberti JW, Braithwaite GJC (2004) Methods for controlling gel properties, articles, and forming physically crosslinked vinyl polymer gels. Cambridge Polymer Group, Inc., USA, p 26 (US20040092653A1)

    Google Scholar 

  • Saha D, Bhattacharya S (2010) Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol 47(6):587–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena A, Tahir A, Kaloti M, Ali J, Bohidar HB (2011) Effect of agar-gelatin compositions on the release of salbutamol tablets. Int J Pharm Invest 1(2):93–98

    Article  CAS  Google Scholar 

  • Schupper N, Rabin Y, Rosenbluh M (2008) Multiple stages in the aging of a physical polymer gel. Macromolecules (Washington DC, US) 41(11):3983–3994

    CAS  Google Scholar 

  • Seiffert S, Sprakel J (2012) Physical chemistry of supramolecular polymer networks. Chem Soc Rev 41(2):909–930

    Article  PubMed  CAS  Google Scholar 

  • Shoichet MS, Baumann MD, Kang CE (2010) Enhanced stability of inverse thermal gelling composite hydrogels. University of Toronto, Can., p 26 (Cont.-in-part of U.S. Ser. No. 410,831.) (US20100285113A1)

    Google Scholar 

  • Spiller KL, Laurencin SJ, Charlton D, Maher SA, Lowman AM (2008) Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties. Acta Biomater 4(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Spoljaric S, Salminen A, Luong ND, Seppala J (2014) Stable, self-healing hydrogels from nanofibrillated cellulose, poly(vinyl alcohol) and borax via reversible crosslinking. Eur Polym J 56:105–117

    Article  CAS  Google Scholar 

  • Stauffer SR, Peppas NA (1992) Poly (vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer 33(18):3932–3936

    Article  CAS  Google Scholar 

  • Swamy BY, Yun Y-S (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Kanaya T, Nishida K, Kaji K (2003) Effects of cononsolvency on gelation of poly(vinyl alcohol) in mixed solvents of dimethyl sulfoxide and water. Polymer 44(15):4075–4078

    Article  CAS  Google Scholar 

  • Takeshita H, Kanaya T, Nishida K, Kaji K (1999) Gelation process and phase separation of PVA solutions as studied by a light scattering technique. Macromolecules 32(23):7815–7819

    Article  CAS  Google Scholar 

  • Tsujiyama S-I, Nitta T, Maoka T (2011) Biodegradation of polyvinyl alcohol by Flammulina velutipes in an unsubmerged culture. J Biosci Bioeng 112(1):58–62

    Article  PubMed  CAS  Google Scholar 

  • Urano T, Ina S (2004) Lime-based coating material compositions containing carrageenan for plastering. Murakashi Lime Industry Co., Ltd., Japan, p 26 (WO2004031098A1)

    Google Scholar 

  • Wang H-H, Shyr T-W, Hu M-S (1999) The elastic property of polyvinyl alcohol gel with boric acid as a crosslinking agent. J Appl Polym Sci 74(13):3046–3052

    Article  CAS  Google Scholar 

  • Wang S, Zhang Q, Tan B, Liu L, Shi L (2011) pH-Sensitive poly(Vinyl alcohol)/sodium carboxymethylcellulose hydrogel beads for drug delivery. J Macromol Sci Part B Phys 50(12):2307–2317

    Article  CAS  Google Scholar 

  • Wang H, Shi Y, Wang L, Yang Z (2013a) Recombinant proteins as cross-linkers for hydrogelations. Chem Soc Rev 42(3):891–901

    Article  PubMed  CAS  Google Scholar 

  • Wang M-D, Zhai P, Schreyer DJ, Zheng R-S, Sun X-D, Cui F-Z, Chen X-B (2013b) Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering. Front Mater Sci 7(3):269–284

    Article  Google Scholar 

  • Wu X-Y, Huang S-W, Zhang J-T, Zhuo R-X (2004) Preparation and characterization of novel physically cross-linked hydrogels composed of poly(vinyl alcohol) and amine-terminated polyamidoamine dendrimer. Macromol Biosci 4(2):71–75

    Article  PubMed  CAS  Google Scholar 

  • Xiao C, Gao Y (2008) Preparation and properties of physically crosslinked sodium carboxymethylcellulose/poly(vinyl alcohol) complex hydrogels. J Appl Polym Sci 107(3):1568–1572

    Article  CAS  Google Scholar 

  • Yadav R, Kandasubramanian B (2013) Egg albumin PVA hybrid membranes for antibacterial application. Mater Lett 110:130–133

    Article  CAS  Google Scholar 

  • Yan C-Q, Pochan DJ (2010) Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev 39(9):3528–3540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Yu L, Ding J (2008) Roles of hydrophilic homopolymers on the hydrophobic-association-induced physical gelling of amphiphilic block copolymers in water. Macromolecules (Washington DC US) 41(17):6493–6499

    CAS  Google Scholar 

  • Zhang H, Xia H, Zhao Y (2012) Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett 1(11):1233–1236

    Article  CAS  Google Scholar 

  • Zhang Y, Hui B, Ye L (2015) Reactive toughening of polyvinyl alcohol hydrogel and its wastewater treatment performance by immobilization of microorganisms. RSC Adv 5(111):91414–91422

    Article  CAS  Google Scholar 

  • Zou X, Zheng D, Yu G, Wang H, Yang L, Shan J (2015) Preparation of poly(vinyl alcohol)/calcium alginate hydrogel and the study on mechanical property. Huagong Xinxing Cailiao 43(6):118–120, 123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Kovalcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovalcik, A. (2018). Physicomechanical Properties and Utilization of Hydrogels Prepared by Physical and Physicochemical Crosslinking. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6083-0_1

Download citation

Publish with us

Policies and ethics