Skip to main content

Intelligent Hydrogels as Drug Delivery Systems

  • Chapter
  • First Online:
Hydrogels

Abstract

A drug delivery system (DDS) can be defined as a formulation or a device that facilitates the release of a therapeutic substance in the body. Key parameters of interest in DDS are safety, delivery rate, efficiency, as well as time and place of release of drugs. Lately, hydrogels have attracted significant attention for application in drug delivery. Hydrogels are three-dimensional polymer networks consisting largely of water. They are characterised by a porous structure with porosity, pore size and geometry that can be varied during the hydrogel synthesis. Importantly, due to porous structure they have the ability to incorporate biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AAO (2014) Tear duct implant effective at reducing pain and inflammation in cataract surgery patients. American Academy of Opthalmology

    Google Scholar 

  • Al-Ahmady ZS, Al-Jamal WT, Bossche JV, Bui TT, Drake AF, Mason AJ, Kostarelos K (2012) Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano 6:9335–9346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annabi N, Nichol JW, Zhong X, Li C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16(4):371–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azab AK, Kleinstern J, Doviner V, Orkin B, Srebnik M, Nissan A, Rubinstein A (2007) Prevention of tumor recurrance and distant metastasis formation in a breast cancer mouse model by biodegradable implant of I-Norcholestrol. J Control Release 123:116–122

    Article  CAS  PubMed  Google Scholar 

  • Barron V, Killion JA, Pilkington L, Burke G, Geever LM, Lyons JG, McCullagh E, Higginbotham CL (2016) Development of chemically cross-linked hydrophillic-hydrophobic hydrogels for drug delivery applications. Eur Polym J 75:25–35

    Google Scholar 

  • Begam T, Nagpal AK, Singhal R (2003) A comparative study of swelling properties of hydrogels based on poly(acrylamide-co-metyl methacrylate) containing physical and chemical crosslinks. J Appl Polym Sci 89:779–786

    Article  CAS  Google Scholar 

  • Berkowitz WF, Choudhry SC, Hrabie JA (1982) Conversion of asperuloside to optically active prostaglandin intermediates. J Org Chem 47(5):824–829

    Article  CAS  Google Scholar 

  • Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. J Adv Drug Deliv Rev 62(1):83–99

    Article  CAS  Google Scholar 

  • Bierbrauer F (2005) Hydrogel drug delivery: diffusion models, internal report. School of Mathematics and Applied Statistics, University of Wollongong, Australia. www.bierbrauerf.weebly.com

  • Bonini C, Iavarone C, Trogolo C, Fabio RD (1984) One-pot conversion of 6-hydroxy-Δ7-iridoid glucosides into cis-2-oxabicyclo[3.3.0]oct-7-enes and transformation into corey’s lactone analogue. J Org Chem 50(7):958–981

    Article  Google Scholar 

  • Braithwaite G (2013) Hydrogels, polymers and plastics in medical devices. Boston, MA, USA. www.campoly.com/educational-resources/presentations/

  • Butler MF, Ng Y-F, Pudney PDA (2003) Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci 41(24):3941–3953

    Article  CAS  Google Scholar 

  • Butler MF, Clark AH, Adams S (2006) Swelling and mechanical properties of biopolymer hydrogels containing chitosan and bovine serum albumin. Biomacromol 7(11):2961–2970

    Article  CAS  Google Scholar 

  • Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polymer J 65:252–267

    Article  CAS  Google Scholar 

  • Cao X, Lai S, Lee LJ (2001) Design of a self-regulated drug delivery device. Biomed Microdevice 3(2):109–118

    Article  CAS  Google Scholar 

  • Chen J, Blevins WE, Park H, Park K (2000) Gastric retention properties of superporous hydrogel composites. J Control Release 64(1–3):39–61

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Ouyang W, Lawuyi B, Martoni C, Prakesh S (2005) Reaction of chitosan with genipin and its fluorogenic attributes for potential microcapsule membrane characterization. J Biomed Mater Res 75A(4):917–927

    Article  CAS  Google Scholar 

  • Delgadillo-Amendariz NL, Rangel-Vazquez NA, Marquez-Brazon EA, Rojas-DeGascue B (2014) Interactions of chitosan/genipin hydrogels during drug delivery: a QSPR approach. Quim Nova 37(9):1503–1509

    Google Scholar 

  • Delmar K, Bianco-Peled H (2015) The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin. Carbohyd Polym 127

    Google Scholar 

  • Dimida S, Demitri C, Benedictis VMD, Scalera F, Gervaso F, Sannino A (2015) Genipin-cross-linked chitosan-based hydrogels: reaction kinetics and structure-related characterstics. J Appl Polym Sci 132(28):1–8

    Article  CAS  Google Scholar 

  • Djekic L, Martinovic M, Stepanovic-Petrovic R, Micov A, Tomic M, Primorac M (2016) Formulation of hydrogel-thickened nonionic microemulsions with enhanced percutaneous delivery of Ibuprofen assessed in vivo in rats. Eur J Pharm Sci

    Google Scholar 

  • Djerassi C, Gray JD, Kincl FA (1960) Naturally occurring oxygen heterocyclics. IX. Isolation and characterisation of genipin. J Org Chem 25(12):2174–2177

    Article  CAS  Google Scholar 

  • Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551–554

    Article  CAS  PubMed  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  PubMed  Google Scholar 

  • Ebara M, Kotsuchibash Y, Narain R, Idota N, Kim Y-J, Hoffman JM, Aoyagi T (2014) Smart biomaterials. Springer, Tsukuba, Japan

    Book  Google Scholar 

  • Endo T, Taguchi H (1973) The constituents of gardenia jasminoides geniposide and genipin-gentibioside. Chem Pharm Bull 21:2684–2688

    Article  CAS  Google Scholar 

  • Felt O, Furrer P, Mayer JM, Plazonnet B, Buri P, Gurny R (1999) Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int J Pharm 180:185–193

    Article  CAS  PubMed  Google Scholar 

  • Fiamingo A, Campana-Filho SP (2016) Structure, morphology and properties of genipin-crosslinked carbomethylchitosan porous membranes. Carbohyd Polym 143(1):155–163

    Article  CAS  Google Scholar 

  • Fujikawa S, Yokota T, Koga J (1987) The continuous hydrolysis of geniposide to genipin using immobilized β-glucosidae on calcium alginate gel. Biotech Lett 9(10):687–702

    Article  Google Scholar 

  • Funami T, Hiroe M, Noda S, Asai I, Ikeda S, Nishinari K (2007) Influence of molecular structure imaged with atomic force microscopy on the rheological behaviour of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocolloids 21(1):617–629

    Article  CAS  Google Scholar 

  • Galaev IY, Mattiasson B (1999) Smart polymers and what they could do in biotechnology and medicine. Trends Biotechnol 17(1):335–340

    Article  CAS  PubMed  Google Scholar 

  • Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):275–298

    Google Scholar 

  • Gao L, Gan H, Meng Z, Gu R, Wu Z, Zhang L, Zhu X, Sun W, Li J, Zheng Y, Dou G (2014) Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability. Colloids Surf B 117(1):398–405

    Article  CAS  Google Scholar 

  • Gou M, Li X, Dai M, Gong C, Wang X, Xie Y, Deng H, Chen L, Zhao X, Qian Z, Wei Y (2008) A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int J Pharm 359:228–233

    Article  CAS  PubMed  Google Scholar 

  • Gulrez SKH, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications. Hydrocolloids Research Centre, Wrexham, UK

    Google Scholar 

  • Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Dis Today 7(10):569–579

    Article  CAS  Google Scholar 

  • Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  PubMed  Google Scholar 

  • Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33(1):2472–2479

    Article  CAS  Google Scholar 

  • Hennink WE, Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 54(1):13–36

    Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Article  CAS  Google Scholar 

  • Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  • Holowka EP, Bhatia SK (2014) Drug delivery: materials design and clinical perspective. Springer, New York

    Book  Google Scholar 

  • Hurst G, Novakovic K (2013) A facile in situ morphological characterization of smart genipin-crosslinked chitosan-poly(vinyl pyrrolidone) hydrogels. J Mater Res 28(17):2401–2408

    Article  CAS  Google Scholar 

  • Jabeen S, Maswal M, Chat OA, Rather GM, Dar AA (2016) Rheological behaviour and Ibuprofen delivery applications of pH responsive composite alginate hydrogels. Colloids Surf B Biointerfaces 139:211–218

    Google Scholar 

  • Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969–4985

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Liu Z, Ding S, Li L, Zhou C (2006) Preparation of biodegradable crosslinking agents and application in PVP hydrogel. J Appl Polym Sci 101(3):1515–1521

    Article  CAS  Google Scholar 

  • Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28:5087–5092

    Article  CAS  PubMed  Google Scholar 

  • Kharlampieva E, Erel-Unal I, Sukhishvili SA (2007) Amphoteric surface hydrogels derived from hydrogen-bonded multilayers: reversible loading of dyes and macrmolecules. Langmuir 23(1):175–181

    Article  CAS  PubMed  Google Scholar 

  • Koren E, Apte A, Jani A, Torchilin VP (2012) Mulitfunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 160:264–273

    Article  CAS  PubMed  Google Scholar 

  • Lee BP, Konst S (2014) Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv Mater 26(21):3415–3419

    Article  CAS  PubMed  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Chung H, Yeo S, Ahn C-H, Lee H, Messersmith PB, Park TG (2010) Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter 6:977–983

    Article  CAS  Google Scholar 

  • Li Y, Rodrigues J, Tomás H (2012) Injectable and biodegradable hydrogels: gelation, biodegredation and biomedical applications. Chem Soc Rev 41:2193–2221

    Article  CAS  PubMed  Google Scholar 

  • Liu T-Y, Lin Y-L (2010) Novel pH-sensitive chitosan-based hydrogel for encapsulating poorly water-soluble drugs. Acta Biomater 6(4):1423–1429

    Article  CAS  PubMed  Google Scholar 

  • Magnin D, Lefebvre J, Chornet E, Dumitriu S (2004) Physiological and structural characterisation of a polyanionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohyd Polym 55(4):437–453

    Article  CAS  Google Scholar 

  • Mahajan A, Aggarwal G (2011) Smart polymers: innovations in novel drug delivery. Int J Drug Dev Res 3(3):16–30

    CAS  Google Scholar 

  • Maitra J, Shukla VK (2014) Cross-linking in hydrogels—a review. Am J Polym Sci 4(2):25–31

    CAS  Google Scholar 

  • Mann BK, Gobin AS, Tsai AT, Scmedlen RH, West JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051

    Article  CAS  PubMed  Google Scholar 

  • Martin L, Wilson CG, Koosha F, Uchegbu IF (2003) Sustained buccal delivery of the hydrophobic drug denbufylline using physically cross-lined palmitoyl glycol chitosan hydrogels. Eur J Pharm Biopharm 55:35–43

    Article  CAS  PubMed  Google Scholar 

  • Maskare R, Bajaj A, Jain D, Braroo P, Babul N, Kao H (2013) Hydrogel-thickened nanoemulsions for topical administration of Ibuprofen. J Pain 14(4):S86

    Article  Google Scholar 

  • Matcham S, Novakovic K (2016) Fluorescence imaging in genipin crosslinked chitosan–poly(vinyl pyrrolidone) hydrogels. Polymers 8:385

    Article  CAS  PubMed Central  Google Scholar 

  • McKenzie M, Betts D, Suh A, Bui K, Kim LD, Cho H (2015) Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 20:20397–20408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi F-L, Syu S-S, Peng C-K (2005) Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. J Polym Sci 43(10):1985–2000

    Article  CAS  Google Scholar 

  • Moura J, Figueiredo M, Gil H (2007) Rheological study of genipin cross-linked chitosan hydrogels. Biomacromol 8:3823–3829

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohyd Polym 77(1):1–9

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, Mehtedi ME, Bottegoni C, Aquili A, Gigante A (2015) Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Mar Drugs 13(12):7314–7338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muzzarelli RAA, Mehtedi ME, Bottegoni C, Gigante A (2016) Physical properties imparted by genipin to chitosan for tissue regeneration with human stem cells. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2016.03.075

    Article  PubMed  Google Scholar 

  • Naruto M, Ohno K, Naruse N (1978) The synthesis of useful chiral prostanoid intermediates and naturally occurring prostaglandins from aucubin. Chem Lett, 1419–1422

    Google Scholar 

  • Nichols JJ (2013) Contact Lenses 2012. Contact Lenses Spectrum 28:24–29. https://www.clspectrum.com/issues/2013/january-2013/contact-lenses-2012

    Google Scholar 

  • Ninawe PR, Parulekar SJ (2011) Drug loading into and drug release from pH- and temperature-responsive cylindrical hydrogels. Biotechnol Prog 27(5):1442–1454

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23:4307–4314

    Article  CAS  PubMed  Google Scholar 

  • NHS: Blood and Transplant (2015) Organ donation and transplantation: activity report 2014/15. NHS

    Google Scholar 

  • Nwosu CJ, Hurst GA, Novakovic K (2015) Genipin cross-linked chitosan-polyvinylpyrrolidone hydrogels: influence of composition and postsynthesis treatment on pH responsive behaviour. Adv Mat Sci Eng 1–10

    Google Scholar 

  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477

    Article  CAS  Google Scholar 

  • Organ Donation (2015) NHS blood and transplant reveals nearly 49,000 people in the UK have had to wait for a transplant in the last decade. www.organdonation.nhs.uk/news-and-campaigns/news/nhs-blood-and-transplant-reveals-nearly-49-000-people-in-the-uk-have-had-to-wait-for-a-transplant-in-the-last-decade/

  • Ottenbrite RM, Park K, Okano T (2010) Biomedical applications of hydrogels handbook. Springer

    Google Scholar 

  • Ozeki T, Hashizawa K, Kaneko D, Imai Y, Okada H (2010) Treatment of rat brain tumors using sustained-release of camptothecin from poly(lactic-co-glycolic-acid) microspheres in a thermoreversible hydrogel. Chem Pharm Bull 58(9):1142–1147

    Article  CAS  Google Scholar 

  • Paik Y-S, Lee C-M, Cho M-H, Hahn T-R (2001) Physical stability of the blue pigments formed from geniposide of gardenia fruits: effects of pH, temperature, and light. J Agric Food Chem 49(1):430–432

    Article  CAS  PubMed  Google Scholar 

  • Paranhos CM, Oliveira RN, Soares BG, Pessan LA (2007) Poly(vinyl alcohol)/sulfonated polyester hydrogels produced by freezing and thawing technique: preparation and characterisation. Mat Res 10(1):43–46

    Article  CAS  Google Scholar 

  • Park K (1988) Enzyme-digestible swelling hydrogels as platforms for long-term oral drug delivery: synthesis and characterization. Biomaterials 9(5):435–441

    Article  CAS  PubMed  Google Scholar 

  • Park J-E, Lee J-Y, Kim H-G, Hahn T-R, Paik Y-S (2002) Isolation and characterization of water-soluble intermediates of blue pigments transformed from geniposide of gardenia jaminoides. J Agric Food Chem 50(22):6511–6514

    Article  CAS  PubMed  Google Scholar 

  • Peng K, Tomatsu I, Kros A (2011) Hydrogel-based drug carries for controlled release of hyrdrophobic drugs and proteins. J Controll Release 152(1):e72–e74

    Article  CAS  Google Scholar 

  • Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  • Petta D, Fussell G, Hughes L, Buechter DD, Sprecher CM, Alini M, Eglin D, D’Este M (2016) Calcium phosphate/thermoresponsive hyaluronan hydrogel composite delivering hydrophilic and hydrophobic drugs. J Orthopaedic Transl 6:57–68

    Article  Google Scholar 

  • Phillips GO, Williams PA (2009) Handbook of hydrocolloids, 2nd edn. Woodhead Publishing, UK

    Book  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  PubMed  Google Scholar 

  • Rainsford KD (2012) Ibuprofen: pharmacology, therapeutics and side effects. Springer, Sheffield

    Book  Google Scholar 

  • Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH (2009) Controlled and targeted tumour chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Controll Release 138:268–276

    Article  CAS  Google Scholar 

  • Robitaille M, Shi J, McBride S, Wan K-T (2013) Mechanical performance of hydrogel contact lenses with a range of power under parallel plate compression and central load. J Mech Behav Biomed Mat 22:59–64

    Article  Google Scholar 

  • Roldan JE (2003) Hydrogels: introduction and applications in biology and engineering. Department of Biological Sciences, Louisiana Tech University, Louisiana

    Google Scholar 

  • Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M (2006) The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials 27:388–396

    Article  CAS  PubMed  Google Scholar 

  • Sakthivel M, Franklin DS, Guhanathan S (2015) Intelligent hydrogels for controlled drug delivery system: a review. Int J Front Sci Technol 3(2):37–47

    CAS  Google Scholar 

  • Scherman OA (2012) Biomaterials 33(18):4646–4652. http://www.pharmtech.com/formulation-development-forum-hydrogels-long-sustained-release

  • Schroeder A, Goldberg MS, Kastrup C, Wang Y, Jiang S, Joseph BJ, Levins CG, Kannan ST, Langer R, Anderson DG (2012) Remotely activated protein-producing nanoparticles. Nano Lett 12:2685–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Pandey R, Sharma S, Khuller GK (2004) Chemotherapeutic efficacy of poly(dl-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis. Int J Antimicrob Agents 24(6):599–604

    Article  CAS  PubMed  Google Scholar 

  • Sharpe LA, Daily AM, Horava SD, Peppas NA (2014) Therapeutic applications of hydrogels in oral drug delivery. Expert Opin Drug Deliv 11(6):901–915

    Google Scholar 

  • Shin J, Han SG, Lee W (2012) Dually tunable inverse optical hydrogel colorimetric sensor with fast and reversible color changes. Sens Actuactors B Chem 168:20–26

    Article  CAS  Google Scholar 

  • Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressing: indications and best use. Clin Tech Equine Pract 3(2):148–163

    Article  Google Scholar 

  • Sung HW, Huang RN, Huang LL, Tsai CC (1999) In vitro cytotoxicity of a naturally occurring cross-linking reagent for biological tissue formation. J Biomat Sci Polym Ed 10(1):63–78

    Article  CAS  Google Scholar 

  • Tang C, Guan Y-X, Yao S-J, Zhu Z-Q (2014) Preparation of Ibuprofen-loaded chitosan films for oral mucosal drug delivery using supercritical solution impregnation. Int J Pharm 473(1–2):434–441

    Article  CAS  PubMed  Google Scholar 

  • Torres AJ, Zhu C, Shuler ML (2011) Paclitaxel delivery to brain tumors from hydrogels: a computational study. Biotechnol Prog 27(5):1478–1487

    Article  CAS  PubMed  Google Scholar 

  • Trevor SL, Butler MF, Adams S, Laity PR, Burley JC, Cameron RE (2008) Structure and phase transitions of genipin, an herbal medicine and naturally occurring cross-linker. Cryst Growth Des 8(5):1748–1753

    Article  CAS  Google Scholar 

  • Tsai T-R, Tseng T-Y, Chen C-F, Tsai T-H (2002) Identification and determination of geniposide contained in gardenia jaminoides and in two preparations of mixed traditional chinese medicines. J Chromatogr A 961(1):83–88

    Article  CAS  PubMed  Google Scholar 

  • van der Linden HJ, Herber S, Olthuis W, Bergveld P (2003) Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis. Analyst 128(4)

    Google Scholar 

  • Vashist A, Vashist A, Gupta YK, Ahmad S (2014) Recent advances in hydrogel based drug delivery systems for the human body. J Mat Chem B 2:147–166

    Article  CAS  Google Scholar 

  • Vozzi G, Corallo C, Carta S, Fortina M, Gattazzo F, Galletti M, Giordano N (2013) Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. J Biomed Mat Res A 102(5):1415–1421

    Article  CAS  Google Scholar 

  • Wang Y, Lu Z, Han Y, Feng Y, Tang C (2011) A novel thermoviscosifying water-soluble polymer for enhancing oil recovery from high-temperature and high-salinity oil resevoirs. Adv Mat Res 306:654–657

    Google Scholar 

  • Wang J, Wang L, Yu H, Zain-Ul-Abdin, Chen Y, Chen Q, Zhou W, Zhang H, Chen X (2016) Recent progress on synthesis, property and application of modified chitosan: an overview. Int J Biol Macromol 88:333–334

    Google Scholar 

  • Watkins KA, Chen R (2015) pH-responsive, lysine-based hydrogels for the oral delivery of a wide szie range of molecules. Int J Pharm 478(2):496–503

    Article  CAS  PubMed  Google Scholar 

  • Wei C-S, Kim C, Kim H-J, Limsakul P (2012) Hydrogel drug delivery: diffusion models

    Google Scholar 

  • Xiao Z, Ji C, Shi J, Pridgen EM, Frieder J, Wu J, Farokhzad OC (2012) DNA self-assembly of targeted near-infrared-responsive gold nanoparticles for cancer thermo-chemotherapy. Angew Chem Int Ed 54:11853–11857

    Article  CAS  Google Scholar 

  • Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin Y (2010) Voltage-responsive vesicles based on orthgonal assembly of two homopolymers. J Am Chem Soc 132:9268–9270

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Hu X (2016) A pH-sensitive injectable nanoparticle composite hydrogel for anticancer drug delivery. J Nanomat 1–8

    Google Scholar 

  • Yu Q, Bauer JM, Moore JS, Beebe DJ (2001) Responsive biomimetic hydrogel valve for microfluidics. Appl Phys Lett 78:2589–2591

    Article  CAS  Google Scholar 

  • Zhang C-Y, Parton LE, Ye CP, Krauss S, Shen R, Lin C-T, Porco Jr JA, Lowell BB (2006) Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity—and high glucose-induced β cell dysfunction in isolated pancreatic islets. Cell Metab 3(6):417–427

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina Novakovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Novakovic, K., Matcham, S., Scott, A. (2018). Intelligent Hydrogels as Drug Delivery Systems. In: Thakur, V., Thakur, M. (eds) Hydrogels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6077-9_1

Download citation

Publish with us

Policies and ethics