Skip to main content

Recovering the 3D Geometry of Heritage Monuments from Image Collections

  • Chapter
  • First Online:
Digital Hampi: Preserving Indian Cultural Heritage
  • 682 Accesses

Abstract

Several methods have been proposed for large-scale 3D reconstruction from large, unorganized image collections. A large reconstruction problem is typically divided into multiple components which are reconstructed independently using structure from motion (SFM) and later merged together. Incremental SFM methods are most popular for the basic structure recovery of a single component. They are robust and effective but strictly sequential in nature. We present a multistage approach for SFM reconstruction of a single component that breaks the sequential nature of the incremental SFM methods. Our approach begins with quickly building a coarse 3D model using only a fraction of features from given images. The coarse model is then enriched by localizing remaining images and matching and triangulating remaining features in subsequent stages. The geometric information available in the form of the coarse model allows us to make these stages effective, efficient, and highly parallel. We show that our method produces similar quality models as compared to standard SFM methods while being notably fast and parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Agarwal S, Mierle K (2010) Others: Ceres solver. http://ceres-solver.org

  2. Agarwal S, Snavely N, Seitz SM, Szeliski R (2010) Bundle adjustment in the large. In: Proceedings ECCV

    Google Scholar 

  3. Agarwal S, Snavely N, Simon I, Seitz SM, Szeliski R (2009) Building rome in a day. In: Proceedings ICCV

    Google Scholar 

  4. Agrawal A, Raskar R, Chellappa, R (2006) What is the range of surface reconstructions from a gradient field?. In: Proceedings of the European Conference on Computer Vision

    Google Scholar 

  5. Aharon M, Elad M, Bruckstein A (2006) K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process

    Google Scholar 

  6. Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J ACM 45(6)

    Google Scholar 

  7. Barron J, Malik J (2012) Color constancy, intrinsic images, and shape estimation. In: Proceedings of the European Conference on Computer Vision

    Google Scholar 

  8. Bhowmick B, Patra S, Chatterjee A, Govindu V, Banerjee S (2014) Divide and conquer: Efficient large-scale structure from motion using graph partitioning. In: Proceedings ACCV, pp. 273–287

    Google Scholar 

  9. Brown M, Lowe D (2005) Unsupervised 3d object recognition and reconstruction in unordered datasets. In: 3-D Digital Imaging and Modeling

    Google Scholar 

  10. Byröd M, Åström K (2010) Conjugate Gradient Bundle Adjustment

    Google Scholar 

  11. Cao S, Snavely N(2012) Learning to match images in large-scale collections. In: Proceedings ECCV Workshop

    Google Scholar 

  12. Chatterjee A, Govindu VM (2013) Efficient and robust large-scale rotation averaging. In: 2013 IEEE ICCV

    Google Scholar 

  13. Choudhary S, Narayanan P (2012) Visibility probability structure from SfM datasets and applications. In: Proceedings ECCV

    Google Scholar 

  14. Chum O, Matas J (2010) Large-scale discovery of spatially related images. IEEE Trans Pattern Anal Mach Intell 32(2):371–377

    Google Scholar 

  15. Cohen A, Sattler T, Pollefeys M (2015) Merging the unmatchable: Stitching visually disconnected SfM models. In: Proceedings IEEE ICCV

    Google Scholar 

  16. Cohen A, Zach C, Sinha S, Pollefeys M (2012) Discovering and exploiting 3d symmetries in structure from motion. In: Proceedings CVPR

    Google Scholar 

  17. Crandall D, Owens A, Snavely N, Huttenlocher D (2011) Discrete-continuous optimization for large-scale structure from motion. In: Proceedings IEEE CVPR

    Google Scholar 

  18. Frahm JM, Fite-Georgel P, Gallup D, Johnson T, Raguram R, Wu C, Jen YH, Dunn E, Clipp B, Lazebnik S, Pollefeys M (2010) Building rome on a cloudless day. In: Proceedings ECCV

    Google Scholar 

  19. Gherardi R, Farenzena M, Fusiello A (2010) Improving the efficiency of hierarchical structure-and-motion. In: Proceedings IEEE CVPR

    Google Scholar 

  20. Hartley R, Zisserman A (2003) Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge

    Google Scholar 

  21. Hartmann W, Havlena M, Schindler K (2014) Predicting matchability. Proceedings IEEE CVPR. CVPR ’14. IEEE Comput Society, Washington, DC, USA, pp 9–16

    Google Scholar 

  22. Havlena M, Schindler K (2014) Vocmatch: Efficient multiview correspondence for structure from motion. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds.) Proceedings ECCV 2014

    Google Scholar 

  23. Havlena M, Torii A, Knopp J, Pajdla T (2009) Randomized structure from motion based on atomic 3d models from camera triplets. In: Proceedings IEEE CVPR

    Google Scholar 

  24. Havlena M, Torii A, Pajdla T (2010) Efficient structure from motion by graph optimization. In: Proceedings ECCV 2010

    Google Scholar 

  25. Irschara A, Zach C, Frahm JM, Bischof H (2009) From structure-from-motion point clouds to fast location recognition. In: Proceedings IEEE CVPR

    Google Scholar 

  26. Jian C, Cong L, Jiaxiang W, Hainan C, Hanqing L (2014) Fast and accurate image matching with cascade hashing for 3d reconstruction. In: Proceedings IEEE CVPR

    Google Scholar 

  27. Li Y, Snavely N, Huttenlocher DP (2010) Location recognition using prioritized feature matching. In: Proceedings ECCV

    Google Scholar 

  28. Lou Y, Snavely N, Gehrke J (2012) Matchminer: Efficient spanning structure mining in large image collections. In: Proceedings ECCV

    Google Scholar 

  29. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2)

    Google Scholar 

  30. Moulon P, Monasse P, Marlet R (2013) Global fusion of relative motions for robust, accurate and scalable structure from motion. In: IEEE ICCV

    Google Scholar 

  31. Muja M, Lowe DG (2014) Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans Pattern Anal Mach Intel 36

    Google Scholar 

  32. Olsson C, Enqvist O (2011) Stable structure from motion for unordered image collections. In: Proceedings of the 17th Scandinavian conference on Image analysis, ser. SCIA11, pp 524–535

    Google Scholar 

  33. Panagopoulos A, Hadap S, Samaras D (2012) Reconstructing shape from dictionaries of shading primitives. In: Proceedings of the Asian Conference on Computer Vision

    Google Scholar 

  34. Petschnigg G, Szeliski R, Agrawala M, Cohen M, Hoppe H, Toyama K (2004) Digital photography with flash and no-flash image pairs. In: Proceedings of the ACM SIGGRAPH

    Google Scholar 

  35. Ping-Sing T, Shah M (1994) Shape from shading using linear approximation. Image Vision Comput 12(8):487–498

    Google Scholar 

  36. Raguram R, Wu C, Frahm JM, Lazebnik S (2011) Modeling and recognition of landmark image collections using iconic scene graphs. Intern J Comput Vision 95(3):213–239

    Article  Google Scholar 

  37. Sattler T, Leibe B, Kobbelt L (2011) Fast image-based localization using direct 2d-to-3d matching. In: Proceedings IEEE ICCV

    Google Scholar 

  38. Sattler T, Leibe B, Kobbelt L (2012) Improving image-based localization by active correspondence search. In: Proceedings ECCV

    Google Scholar 

  39. Schönberger JL, Berg AC, Frahm JM (2015) Paige: Pairwise image geometry encoding for improved efficiency in structure-from-motion. In: IEEE CVPR

    Google Scholar 

  40. Shah R, Deshpande A, Narayanan PJ (2014) Multistage sfm: Revisiting incremental structure from motion. In: International Conference on 3D Vision (3DV), vol. 1, pp. 417–424

    Google Scholar 

  41. Shah R, Deshpande A, Narayanan PJ (2015) Multistage SFM: A Coarse-to-Fine Approach for 3D Reconstruction. In:CoRR (2015)

    Google Scholar 

  42. Shah R, Srivastava V, Narayanan PJ (2015) Geometry-aware feature matching for structure from motion applications. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 278–285

    Google Scholar 

  43. Sinha S, Steedly D, Szeliski R (2010) A multi-stage linear approach to structure from motion. In: Proceedings ECCV RMLE Workshop

    Google Scholar 

  44. Snavely N, Seitz SM, Szeliski R (2006) Photo tourism: Exploring photo collections in 3d. ACM Trans Graph 25(3)

    Google Scholar 

  45. Snavely N, Seitz SM, Szeliski R (2008) Modeling the world from internet photo collections. Int J Comput Vision 80(2)

    Google Scholar 

  46. Snavely N, Seitz SM, Szeliski R (2008) Skeletal graphs for efficient structure from motion. In: Proceedings IEEE CVPR

    Google Scholar 

  47. Soman J, Kothapalli K, Narayanan PJ (2010) Some GPU algorithms for graph connected components and spanning tree. Parallel Process Lett 20(04)

    Google Scholar 

  48. Sturm PF, Triggs B (1996) A factorization based algorithm for multi-image projective structure and motion. In: Proceedings of the 4th European Conference on Computer Vision, ECCV ’96, pp 709–720

    Google Scholar 

  49. Sweeney C (2015) Theia Multiview Geometry Library: Tutorial & Reference. University of California, Santa Barbara

    Google Scholar 

  50. Szeliski R, Kang SB (1993) Recovering 3d shape and motion from image streams using nonlinear least squares. In: Proceedings CVPR ’93, 1993 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 752–753 (1993)

    Google Scholar 

  51. Taylor C, Kriegman D, Anandan P (1991) Structure and motion in two dimensions from multiple images: a least squares approach. In Proceedings of the IEEE Workshop on Visual Motion, pp 242–248

    Google Scholar 

  52. Tomasi C, Kanade T (1992) Shape and motion from image streams under orthography: a factorization method. Intern J Comput Vision 9(2):137–154

    Google Scholar 

  53. Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (2000) Bundle adjustment a modern synthesis. In: Triggs B, Zisserman A, Szeliski R (eds.) Vision Algorithms: Theory and Practice, vol. 1883, pp 298–372

    Google Scholar 

  54. Wilson K, Snavely N (2014) Robust global translations with 1DSfM. In: Proceedings ECCV

    Google Scholar 

  55. Wu C (2007) SiftGPU: A GPU implementation of scale invariant feature transform (SIFT). http://cs.unc.edu/~ccwu/siftgpu

  56. Wu C (2013) Towards linear-time incremental structure from motion. In: 3DV Conference

    Google Scholar 

  57. Wu C, Agarwal S, Curless B, Seitz SM (2011) Multicore bundle adjustment. In: Proceedings IEEE CVPR

    Google Scholar 

  58. Zhang R, Tsai P, Cryer J, Shah M (1999) Shape-from-shading: A survey. IEEE Transac Pattern Anal Mach Intel

    Google Scholar 

Download references

Acknowledgements

This work is supported by Google India PhD Fellowship and India Digital Heritage Project of the Department of Science and Technology, India. We would like to thank Vanshika Srivastava for her contributions to the project and Chris Sweeney for his crucial help regarding use of Theia for our experiments. We would also like to thank the authors of [8] for sharing the details of the Hampi Vitthala Temple dataset they used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop M. Namboodiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, R., Deshpande, A., Namboodiri, A.M., Narayanan, P.J. (2017). Recovering the 3D Geometry of Heritage Monuments from Image Collections. In: Mallik, A., Chaudhury, S., Chandru, V., Srinivasan, S. (eds) Digital Hampi: Preserving Indian Cultural Heritage. Springer, Singapore. https://doi.org/10.1007/978-981-10-5738-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5738-0_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5737-3

  • Online ISBN: 978-981-10-5738-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics