Skip to main content

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 851 Accesses

Abstract

Since antiquity humans develop and use technologies with the ultimate purpose to augment their ability to survive, to treat or eradicate diseases, to enhance quality of living, to better adjust to environmental changes and to prolong lifespan. From the ancient Theriac, an all-purpose cure for a wide range of illnesses [1], to the modern medical technologies, these purposes remain the same. The conceptualization, design, development, test, validation and clinical application of human-made artificial organs has been for centuries a great technological and clinical challenge that can serve these endless humans’ objectives. In our days amazing achievements have occurred due to the rapid progress in technology and particularly in materials science, biotechnology, nanotechnology, tissue and genetic engineering, biomechanics, biosensors, robotics and information technologies. All these advances have been also translated into the design and developement of artificial organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karaberopoulos D, Karamanou M, Androutsos G (2012) The theriac in antiquity. Lancet 379:1942–1943

    Article  Google Scholar 

  2. Morris PD, Narracott A, von Tengg-Kobligk H, Silva Soto DA, Hsiao S, Lungu A, Evans P, Bressloff NW, Lawford PV, Hose DR, Gunn JP (2016) Computational fluid dynamics modelling in cardiovascular medicine. Heart 102:18–28

    Article  Google Scholar 

  3. Formaggia L, Quarteroni A, Veneziani A (2009) Cardiovascular mathematics: modeling and simulation of the circulatory system. Springer, Milan, New York, p xiii, 522

    Chapter  Google Scholar 

  4. Lopez-Perez A, Sebastian R, Ferrero JM (2015) Three-dimensional cardiac computational modelling: methods, features and applications. Biomed Eng Online 14:35

    Article  Google Scholar 

  5. Vardoulis O, Coppens E, Martin B, Reymond P, Tozzi P, Stergiopulos N (2011) Impact of aortic grafts on arterial pressure: a computational fluid dynamics study. Eur J Vasc Endovasc Surg 42:704–710

    Article  Google Scholar 

  6. Reymond P, Bohraus Y, Perren F, Lazeyras F, Stergiopulos N (2011) Validation of a patient-specific one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 301:H1173–H1182

    Article  Google Scholar 

  7. Reymond P, Merenda F, Perren F, Rufenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297:H208–H222

    Article  Google Scholar 

  8. Vavuranakis M, Papaioannou TG, Katsarou OA, Vrachatis DA, Sanidas EA, Siasos G, Kalogeras KI, Schizas D, Stefanadis CI, Tousoulis D (2016) Impact of atherosclerotic plaque components and their distribution on stent deployment: an intravascular-ultrasound virtual histology observational study. Minerva Cardioangiol 64:507–516

    Google Scholar 

  9. Lindsay AC, Paulo M, Kadriye K, Tejeiro R, Alegria-Barrero E, Chan PH, Foin N, Syrseloudis D, Di Mario C (2013) Predictors of stent strut malapposition in calcified vessels using frequency-domain optical coherence tomography. J Invasive Cardiol 25:429–434

    Google Scholar 

  10. Van der Heiden K, Gijsen FJ, Narracott A, Hsiao S, Halliday I, Gunn J, Wentzel JJ, Evans PC (2013) The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc Res 99:269–275

    Article  Google Scholar 

  11. Papaioannou TG, Karatzis EN, Vavuranakis M, Lekakis JP, Stefanadis C (2006) Assessment of vascular wall shear stress and implications for atherosclerotic disease. Int J Cardiol 113:12–18

    Article  Google Scholar 

  12. LaDisa JF Jr, Olson LE, Guler I, Hettrick DA, Audi SH, Kersten JR, Warltier DC, Pagel PS (2004) Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J Appl Physiol 97:424–30. Discussion 416

    Article  Google Scholar 

  13. Gervaso F, Capelli C, Petrini L, Lattanzio S, Di Virgilio L, Migliavacca F (2008) On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J Biomech 41:1206–1212

    Article  Google Scholar 

  14. Pibarot P, Dumesnil JG (2009) Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119:1034–1048

    Article  Google Scholar 

  15. Hasan A, Ragaert K, Swieszkowski W, Selimovic S, Paul A, Camci-Unal G, Mofrad MR, Khademhosseini A (2014) Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech 47:1949–1963

    Article  Google Scholar 

  16. Sacks MS, David Merryman W, Schmidt DE (2009) On the biomechanics of heart valve function. J Biomech 42:1804–1824

    Article  Google Scholar 

  17. Gibbon JH Jr (1954) Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med 37:171–185. Passim

    Google Scholar 

  18. Moulopoulos SD, Topaz S, Kolff WJ (1962) Diastolic balloon pumping (with carbon dioxide) in the aorta–a mechanical assistance to the failing circulation. Am Heart J 63:669–675

    Article  Google Scholar 

  19. Papaioannou TG, Stefanadis C (2005) Basic principles of the intraaortic balloon pump and mechanisms affecting its performance. ASAIO J 51:296–300

    Article  Google Scholar 

  20. Nanas JN, Moulopoulos SD (1994) Counterpulsation: historical background, technical improvements, hemodynamic and metabolic effects. Cardiology 84:156–167

    Article  Google Scholar 

  21. Papaioannou TG, Mathioulakis DS, Stamatelopoulos KS, Gialafos EJ, Lekakis JP, Nanas J, Stamatelopoulos SF, Tsangaris SG (2004) New aspects on the role of blood pressure and arterial stiffness in mechanical assistance by intra-aortic balloon pump: in-vitro data and their application in clinical practice. Artif Organs 28:717–727

    Article  Google Scholar 

  22. Papaioannou TG, Terrovitis J, Kanakakis J, Stamatelopoulos KS, Protogerou AD, Lekakis JP, Nanas JN, Stamatelopoulos SF (2002) Heart rate effect on hemodynamics during mechanical assistance by the intra-aortic balloon pump. Int J Artif Organs 25:1160–1165

    Article  Google Scholar 

  23. Kolyva C, Pepper JR, Khir AW (2016) Newly shaped intra-aortic balloons improve the performance of counterpulsation at the semirecumbent position: an in vitro study. Artif Organs 40:E146–E157

    Article  Google Scholar 

  24. Khir AW (2013) The balancing act of timing the intra-aortic balloon pump. Artif Organs 37:848–850

    Article  Google Scholar 

  25. Aye TP, Htet ZL, Singhavilai T, Naiyanetr P (2015) Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: a computer study. Conf Proc IEEE Eng Med Biol Soc 2015:3303–3306

    Google Scholar 

  26. Giridharan GA, Koenig SC, Mitchell M, Gartner M, Pantalos GM (2007) A computer model of the pediatric circulatory system for testing pediatric assist devices. ASAIO J 53:74–81

    Article  Google Scholar 

  27. Schampaert S, Rutten MC, van TVM, van Nunen LX, Tonino PA, Pijls NH, van de Vosse FN (2013) Modeling the interaction between the intra-aortic balloon pump and the cardiovascular system: the effect of timing. ASAIO J 59:30–36

    Article  Google Scholar 

  28. Miller GE (2006) Artificial heart and cardiac assist devices. In: Miller GE (ed) Artificial Organs, 1st edn. Morgan & Claypool, USA, pp 11–19

    Google Scholar 

  29. Marx V (2015) Tissue engineering: organs from the lab. Nature 522:373–377

    Article  Google Scholar 

  30. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  Google Scholar 

  31. Deretic I, Lorenz Sorgner S (2015) From humanism to meta-, post- and transhumanism? Peter Lang AG

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore G. Papaioannou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papaioannou, T.G. (2019). Artificial Organs. In: Golemati, S., Nikita, K. (eds) Cardiovascular Computing—Methodologies and Clinical Applications. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5092-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5092-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5091-6

  • Online ISBN: 978-981-10-5092-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics