Skip to main content

Spatial Interactions of Electrically Evoked Potentials in Visual Cortex Induced by Multi-retinal Electrical Stimulation in Rats

  • Conference paper
  • First Online:
International Conference on Biomedical and Health Informatics (ICBHI 2015)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 64))

Included in the following conference series:

  • 524 Accesses

Abstract

Retinal prostheses are designed to electrically stimulate retinal neurons to generate artificial vision in patients with degenerative diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Considering hundreds of microelectrodes may be applied in the future retinal prosthesis to provide enough spatial information for precise perception, it is crucial to investigate the spatial properties of the visual cortex in response to retinal electric stimulation via in vivo studies, especially in multi-stimulating manner by adjacent electrodes. In this study, we use retinal multi-stimulating electrodes to stimulate retinal ganglion cells (RGCs) and record electrically evoked potentials (EEPs) in contralateral visual cortex by a 32-channel Utah array. The threshold of eliciting current for EEPs was determined with 20% of the maximum response in visual cortex. The spatial map with 32 grids for single retinal stimulation was obtained firstly, which showed the different spatial distribution to different retinal stimulation. Then the combination of two stimulation from two adjacent retinal stimulating electrode was applied to examine the spatial responses of visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartong, D.T., E.L. Berson, and T.P. Dryja, Retinitis pigmentosa. Lancet, 2006. 368(9549): p. 1795–1809.

    Google Scholar 

  2. Lim, L.S., et al., Age-related macular degeneration. Lancet, 2012. 379(9827): p. 1728–1738.

    Article  Google Scholar 

  3. Tochitsky, I. and R.H. Kramer, Optopharmacological tools for restoring visual function in degenerative retinal diseases. Curr Opin Neurobiol, 2015. 34C: p. 74–78.

    Article  Google Scholar 

  4. Santos, A., et al., Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch Ophthalmol, 1997. 115(4): p. 511–515.

    Article  Google Scholar 

  5. Humayun, M.S., et al., Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci, 1999. 40(1): p. 143–148.

    Google Scholar 

  6. Kim, S.Y., et al., Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina, 2002. 22(4): p. 471–477.

    Article  Google Scholar 

  7. Weiland, J.D., W. Liu, and M.S. Humayun, Retinal prosthesis. Annu Rev Biomed Eng, 2005. p:7. 361–401.

    Article  Google Scholar 

  8. Weiland, J.D., A.K. Cho, and M.S. Humayun, Retinal prostheses: current clinical results and future needs. Ophthalmology, 2011. 118(11): p. 2227–2237.

    Article  Google Scholar 

  9. Ryu, S.B., et al., Temporal response properties of retinal ganglion cells in rd1 mice evoked by amplitude-modulated electrical pulse trains. Invest Ophthalmol Vis Sci, 2010. 51(12): p. 6762–6769.

    Article  Google Scholar 

  10. Tsai, D., et al., Direct activation and temporal response properties of rabbit retinal ganglion cells following subretinal stimulation. J Neurophysiol, 2009. 102(5): p. 2982–2993.

    Article  Google Scholar 

  11. Chan, L.L., et al., Both electrical stimulation thresholds and SMI-32-immunoreactive retinal ganglion cell density correlate with age in S334ter line 3 rat retina. J Neurophysiol, 2011. 105(6): p. 2687–2697.

    Article  Google Scholar 

  12. Elfar, S.D., et al., A cortical (V1) neurophysiological recording model for assessing the efficacy of retinal visual prostheses. J Neurosci Methods, 2009. 180(2): p. 195–207.

    Article  Google Scholar 

  13. Sun, J., et al., Spatiotemporal properties of multipeaked electrically evoked potentials elicited by penetrative optic nerve stimulation in rabbits. Invest Ophthalmol Vis Sci, 2010. 52(1): p. 146–154.

    Article  Google Scholar 

  14. Zrenner, E., et al., Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci, 2010. 278(1711): p. 1489–1497.

    Article  Google Scholar 

  15. Rizzo, J.F., 3rd, et al., Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci, 2003. 44(12): p. 5362–5369.

    Article  Google Scholar 

  16. Humayun, M.S., et al., Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res, 2003. 43(24): p. 2573–2581.

    Article  Google Scholar 

  17. Perez Fornos, A., et al., Temporal properties of visual perception on electrical stimulation of the retina. Invest Ophthalmol Vis Sci, 2012. 53(6): p. 2720–2731.

    Article  Google Scholar 

  18. Fried, S.I., H.A. Hsueh, and F.S. Werblin, A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. J Neurophysiol, 2006. 95(2): p. 970–978.

    Article  Google Scholar 

  19. Sekirnjak, C., et al., High-resolution electrical stimulation of primate retina for epiretinal implant design. J Neurosci, 2008. 28(17): p. 4446–4456.

    Article  Google Scholar 

  20. Barry, M.P. and G. Dagnelie, Use of the Argus II retinal prosthesis to improve visual guidance of fine hand movements. Invest Ophthalmol Vis Sci, 2012. 53(9): p. 5095–5101.

    Article  Google Scholar 

  21. Sekirnjak, C., et al., Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J Neurophysiol, 2006. 95(6): p. 3311–3327.

    Article  Google Scholar 

  22. Stett, A., A. Mai, and T. Herrmann, Retinal charge sensitivity and spatial discrimination obtainable by subretinal implants: key lessons learned from isolated chicken retina. J Neural Eng, 2007. 4(1): p. S7–S16.

    Article  Google Scholar 

  23. Ray, A., et al., Impedance as a method to sense proximity at the electrode-retina interface. IEEE Trans Neural Syst Rehabil Eng, 2011. 19(6): p. 696–699.

    Article  Google Scholar 

Download references

Acknowledgement

The work described in this paper was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China, through Project CityU 123412 and also supported by Guangdong Innovative and Entrepreneurial Research Team Program (No. 2013S046) and Shenzhen Peacock Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leanne Lai-Hang Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, H., Wang, Y., Chan, L.LH. (2019). Spatial Interactions of Electrically Evoked Potentials in Visual Cortex Induced by Multi-retinal Electrical Stimulation in Rats. In: Zhang, YT., Carvalho, P., Magjarevic, R. (eds) International Conference on Biomedical and Health Informatics. ICBHI 2015. IFMBE Proceedings, vol 64. Springer, Singapore. https://doi.org/10.1007/978-981-10-4505-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4505-9_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4504-2

  • Online ISBN: 978-981-10-4505-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics