Skip to main content

Compound Pressure Signal Acquisition

  • Chapter
  • First Online:
  • 636 Accesses

Abstract

In traditional Chinese pulse diagnosis (TCPD), to analyze the health condition of a patient, a practitioner should put three fingers on the wrist of the patient to adaptively feel the fluctuations in the radial pulse at the styloid processes. Thus, for comprehensive pulse signal acquisition, we should efficiently and accurately capture pulse signals at different positions and under different pressures. However, most conventional pulse signal acquisition devices can only capture signal at one position and under a fixed pressure and thus only capture limited pulse diagnostic information. In this chapter, we present a solution to the problems of sensor positioning, sensor array design, pressure adjustment, and mechanical structure design, resulting in a compound system for multiple-channel pulse signal acquisition. Compared with the other systems, this system provides a systematic solution to sensor positioning, is effective in measuring the width of the pulse, and can capture multichannel pulse signals together with sub-signals under different hold-down pressures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Walsh, and E. King, Pulse Diagnosis: A Clinical Guide, Sydney Australia: Elsevier, 2008.

    Google Scholar 

  2. V. D. Lad, Secrets of the Pulse, Albuquerque, New Mexico: The Ayurvedic Press, 1996.

    Google Scholar 

  3. E. Hsu, Pulse Diagnosis in Early Chinese Medicine, New York, American: Cambridge University Press, 2010.

    Google Scholar 

  4. R. Amber, and B. Brooke, Pulse Diagnosis Detailed Interpretations For Eastern & Western Holistic Treatments, Santa Fe, New Mexico: Aurora Press, 1993.

    Google Scholar 

  5. Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Computerized wrist pulse signal diagnosis using modified auto-regressive models,” Journal of Medical Systems, vol. 35, no. 3, pp. 321-328, Jun, 2011.

    Article  Google Scholar 

  6. Y. Chen, L. Zhang, and D. Zhang, “Wrist pulse signal diagnosis using modified Gaussian Models and Fuzzy C-Means classification,” Medical Engineering & Physics, vol. 31, no. 10, pp. 1283-1289, Dec, 2009.

    Article  Google Scholar 

  7. L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Combination of heterogeneous features for wrist pulse blood flow signal diagnosis via multiple kernel learning,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 8, pp. 599-607, Jul, 2012.

    Google Scholar 

  8. L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Classification of wrist pulse blood flow signal using time warp edit distance,” Medical Biometrics, vol. 6165, no. 1, pp. 137-144, 2010.

    Article  Google Scholar 

  9. D. Zhang, L. Zhang, and Y. Zheng, “Wavelet based analysis of doppler ultrasonic wrist-pulse signals,” in Proceedings of IEEE International Conference on Biomedical Engineering and Informatics, Hainan, China, 2008, pp. 539-543.

    Google Scholar 

  10. D. Y. Zhang, W. M. Zuo, D. Zhang, H. Z. Zhang, and N. M. Li, “Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features,” Journal of Biomedical Science and Engineering, vol. 3, no. 4, pp. 361-366, 2010.

    Article  Google Scholar 

  11. D. Zhang, W. Zuo, Y. Li, and N. Li, “Gaussian ERP kernel classifier for pulse waveforms classification,” in Proceedings of IEEE International Conference on Pattern Recognition, Istanbul, Turkey 2010, pp. 2736-2739.

    Google Scholar 

  12. Q. L. Guo, K. Q. Wang, D. Y. Zhang, and N. M. Li, “A wavelet packet based pulse waveform analysis for cholecystitis and nephrotic syndrome diagnosis,” in Proceedings of IEEE International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, 2008, pp. 513-517.

    Google Scholar 

  13. S. Charbonnier, S. Galichet, G. Mauris, and J. P. Siche, “Statistical and fuzzy models of ambulatory systolic blood pressure for hypertension diagnosis,” IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 5, pp. 998-1003, 2000.

    Article  Google Scholar 

  14. H.-T. Wu, C.-H. Lee, C.-K. Sun, J.-T. Hsu, R.-M. Huang, and C.-J. Tang, “Arterial Waveforms Measured at the Wrist as Indicators of Diabetic Endothelial Dysfunction in the Elderly,” IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 1, pp. 162-169, 2012.

    Article  Google Scholar 

  15. P. Dupuis, and C. Eugene, “Combined detection of respiratory and cardiac rhythm disorders by high-resolution differential cuff pressure measurement,” IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 3, pp. 498-502, 2000.

    Article  Google Scholar 

  16. J. U. Kim, Y. J. Jeon, Y.-M. Kim, H. J. Lee, and J. Y. Kim, “Novel fiagnostic model for the deficient and excess pulse qualities,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, no. 563958, pp. 1-11, 2012.

    Google Scholar 

  17. P. Zhang, and H. Wang, “A framework for automatic time-domain characteristic Parameters extraction of human pulse signals,” EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 468390, pp. 1-9, 2008.

    Article  Google Scholar 

  18. C. Chen, E. Nevo, B. Fetics, P. H. Pak, F. C. P. Yin, L. Maughan, and D. A. Kass, “Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function,” Circulation, vol. 95, no. 7, pp. 1827-1836, 1997.

    Article  Google Scholar 

  19. S. Lu, R. Wang, L. Cui, Z. Zhao, Y. Yu, and Z. Shan, “Wireless networked Chinese telemedicine system: method and apparatus for remote pulse information retrieval and diagnosis,” in Proceedings of IEEE International Conference on Pervasive Computing and Communications, Hong Kong, China, 2008, pp. 698-703.

    Google Scholar 

  20. C. C. Tyan, S. H. Liu, J. Y. Chen, J. J. Chen, and W. M. Liang, “A novel noninvasive measurement technique for analyzing the pressure pulse waveform of the radial artery,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 1, pp. 288-297, Jan, 2008.

    Article  Google Scholar 

  21. C.-S. Hu, Y.-F. Chung, C.-C. Yeh, and C.-H. Luo, “Temporal and Spatial Properties of Arterial Pulsation Measurement Using Pressure Sensor Array,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, pp. 1-9, 2012.

    Google Scholar 

  22. H. Sorvoja, V. M. Kokko, R. Myllyla, and J. Miettinen, “Use of EMFi as a blood pressure pulse transducer,” IEEE Transactions on Instrumentation and Measurement, vol. 54, no. 6, pp. 2505-2512, 2005.

    Article  Google Scholar 

  23. E. Kaniusas, H. Pfutzner, L. Mehnen, J. Kosel, C. Tellez-Blanco, G. Varoneckas, A. Alonderis, T. Meydan, M. Vazquez, M. Rohn, A. M. Merlo, and B. Marquardt, “Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG,” IEEE Sensors Journal, vol. 6, no. 3, pp. 819-828, Jun, 2006.

    Article  Google Scholar 

  24. L. Chen, H. Atsumi, M. Yagihashi, F. Mizuno, H. Narita, and H. Fujimoto, “A preliminary research on analysis of pulse diagnosis,” in Proceedings of IEEE International Conference on Complex Medical Engineering, Beijing, China, 2007, pp. 1807-1812.

    Google Scholar 

  25. H.-T. Wu, C.-H. Lee, and A.-B. Liu, “Assessment of endothelial function using arterial pressure signals,” Journal of Signal Processing Systems, vol. 64, no. 2, pp. 223-232, 2011.

    Article  Google Scholar 

  26. ISO, IEC, OIML, and BIPM, Guide to the Expression of Uncertainty in Measurement, Geneva: ISO, 1995.

    Google Scholar 

  27. B. Dobkin, and J. Williams, Analog circuit design: a tutorial guide to applications and solutions, America: Newnes, 2011.

    Google Scholar 

  28. D. A. Fedosov, W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis, “Predicting human blood viscosity in silico,” Proceedings of the National Academy of Sciences, vol. 108, no. 29, pp. 11772-11777, 2011.

    Article  Google Scholar 

  29. I. Wakabayashi, and H. Masuda, “Association of pulse pressure with fibrinolysis in patients with type 2 diabetes,” Thrombosis Research, vol. 121, no. 1, pp. 95-102, 2007.

    Article  Google Scholar 

  30. N. Arunkumar, and K. M. M. Sirajudeen, “Approximate entropy based ayurvedic pulse diagnosis for diabetics - a case study,” in Proceedings of IEEE International Conference on Trendz in Information Sciences and Computing, Chennai, India, 2011, pp. 133-135.

    Google Scholar 

  31. L. Xu, D. Zhang, and K. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 11, pp. 1973-1975, Nov, 2005.

    Article  Google Scholar 

  32. L. Liu, N. Li, W. Zuo, D. Zhang, and H. Zhang, “Multiscale sample entropy analysis of wrist pulse blood flow signal for disease diagnosis,” in Proceedings of Sino-foreign-interchange Workshop on Intelligence Science and Intelligent Data Engineering, NanJing China, 2012.

    Google Scholar 

  33. D. E. Lake, J. S. Richman, M. P. Griffin, and J. R. Moorman, “Sample entropy analysis of neonatal heart rate variability,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol. 283, no. 3, pp. R789-R797, Sep, 2002.

    Article  Google Scholar 

  34. J. S. Richman, and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, pp. H2039-H2049, Jun, 2000.

    Article  Google Scholar 

  35. L. Xu, M. Q. H. Meng, X. Qi, and K. Wang, “Morphology variability analysis of wrist pulse waveform for assessment of arteriosclerosis status,” Journal of Medical Systems, vol. 34, no. 3, pp. 331-339, Jun, 2010.

    Article  Google Scholar 

  36. S. M. Pincus, “Approximate entropy as a measure of system-complexity,” Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp. 2297-2301, Mar, 1991.

    Article  MathSciNet  Google Scholar 

  37. M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of complex physiologic time series,” Physical Review Letters, vol. 89, no. 068102, pp. 1-4, Aug 5, 2002.

    Google Scholar 

  38. M. Costa, A. Goldberger, and C. K. Peng, “Multiscale entropy to distinguish physiologic and synthetic RR time series,” in Proceedings of Computers in Cardiology, Memphis, America, 2002, pp. 137-140.

    Google Scholar 

  39. M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of biological signals,” Physical Review E, vol. 71, no. 021906, pp. 1-18, Feb, 2005.

    MathSciNet  Google Scholar 

  40. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, Jun, 1998.

    Article  Google Scholar 

  41. A. G. Lalkhen, and A. McCluskey, “Clinical tests: sensitivity and specificity,” Continuing Education in Anaesthesia, Critical Care & Pain, vol. 8, no. 6, pp. 221-223, 2008.

    Article  Google Scholar 

  42. J. Platt, “Probabilistic Outputs for Support Vector Machines and Comparison to Regularized Likelihood Methods,” Proceedings of Advances in Large Margin Classifiers, pp. 61-74, 2000.

    Google Scholar 

  43. D. Jia, N. Li, S. Liu, and S. Li, “Decision level fusion for pulse signal classification using multiple features,” in Proceedings of IEEE International Conference on Biomedical Engineering and Informatics, Yantai, China, 2010, pp. 843-847.

    Google Scholar 

  44. J. Kittler, M. Hatef, P. W. Duin, and J. Matas, “On Combining Classifiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 226-239, 1998.

    Article  Google Scholar 

  45. Q. McNemar, “Note on the sampling error of the difference between correlated proportions or percentages,” Psychometrika, vol. 12, pp. 153-157, 1947.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, D., Zuo, W., Wang, P. (2018). Compound Pressure Signal Acquisition. In: Computational Pulse Signal Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-10-4044-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4044-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4043-6

  • Online ISBN: 978-981-10-4044-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics