Skip to main content

Comparison of Three Different Types of Wrist Pulse Signals

  • Chapter
  • First Online:
Computational Pulse Signal Analysis

Abstract

By far, a number of sensors have been employed for pulse signal acquisition, which can be grouped into three major categories, i.e., pressure, photoelectric, and ultrasonic sensors. To guide the sensor selection for computational pulse diagnosis, in this chapter, we analyze the physical meanings and sensitivities of signals acquired by these three types of sensors. The dependency and complementarity of the different sensors are discussed from both the perspective of cardiovascular fluid dynamics and comparative experiments by evaluating disease classification performance. Experimental results indicate that each sensor is more appropriate for the diagnosis of some specific disease that the changes of physiological factors can be effectively reflected by the sensor, e.g., ultrasonic sensor for diabetes and pressure sensor for arteriosclerosis, and improved diagnosis performance can be obtained by combining three types of signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Walsh and E. King, Pulse Diagnosis: A Clinical Guide. Sydney Australia: Elsevier, 2008.

    Google Scholar 

  2. V. D. Lad, Secrets of the Pulse. Albuquerque, New Mexico: The Ayurvedic Press, 1996.

    Google Scholar 

  3. E. Hsu, Pulse Diagnosis in Early Chinese Medicine. New York, American: Cambridge University Press, 2010.

    Google Scholar 

  4. R. Amber and B. Brooke, Pulse Diagnosis: Detailed Interpretations For Eastern & Western Holistic Treatments. Santa Fe, New Mexico: Aurora Press, 1993.

    Google Scholar 

  5. Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Wrist pulse signal diagnosis using modified Gaussian Models and Fuzzy C-Means classification,” Medical Engineering & Physics, vol. 31, pp. 1283–1289, Dec 2009.

    Article  Google Scholar 

  6. Y. Chen, L. Zhang, D. Zhang, and D. Zhang, “Computerized wrist pulse signal diagnosis using modified auto-regressive models,” Journal of Medical Systems, vol. 35, pp. 321–328, Jun 2011.

    Article  Google Scholar 

  7. L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Combination of heterogeneous features for wrist pulse blood flow signal diagnosis via multiple kernel learning,” IEEE Transactions on Information Technology in Biomedicine, vol. 16, pp. 599–607, Jul 2012.

    Google Scholar 

  8. L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Classification of wrist pulse blood flow signal using time warp edit distance,” Medical Biometrics, vol. 6165, pp. 137–144, 2010.

    Google Scholar 

  9. D. Y. Zhang, W. M. Zuo, D. Zhang, H. Z. Zhang, and N. M. Li, “Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features,” Journal of Biomedical Science and Engineering, vol. 3, pp. 361–366, 2010.

    Article  Google Scholar 

  10. Q. L. Guo, K. Q. Wang, D. Y. Zhang, and N. M. Li, “A wavelet packet based pulse waveform analysis for cholecystitis and nephrotic syndrome diagnosis,” in IEEE International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, 2008, pp. 513–517.

    Google Scholar 

  11. S. Charbonnier, S. Galichet, G. Mauris, and J. P. Siche, “Statistical and fuzzy models of ambulatory systolic blood pressure for hypertension diagnosis,” IEEE Transactions on Instrumentation and Measurement, vol. 49, pp. 998–1003, 2000.

    Article  Google Scholar 

  12. H.-T. Wu, C.-H. Lee, C.-K. Sun, J.-T. Hsu, R.-M. Huang, and C.-J. Tang, “Arterial Waveforms Measured at the Wrist as Indicators of Diabetic Endothelial Dysfunction in the Elderly,” IEEE Transactions on Instrumentation and Measurement, vol. 61, pp. 162–169, 2012.

    Article  Google Scholar 

  13. H. Sorvoja, V. M. Kokko, R. Myllyla, and J. Miettinen, “Use of EMFi as a blood pressure pulse transducer,” IEEE Transactions on Instrumentation and Measurement, vol. 54, pp. 2505–2512, 2005.

    Article  Google Scholar 

  14. E. Kaniusas, H. Pfutzner, L. Mehnen, J. Kosel, C. Tellez-Blanco, G. Varoneckas, et al., “Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG,” IEEE Sensors Journal, vol. 6, pp. 819–828, Jun 2006.

    Article  Google Scholar 

  15. C. Lianyi, H. Atsumi, M. Yagihashi, F. Mizuno, H. Narita, and H. Fujimoto, “A preliminary research on analysis of pulse diagnosis,” in IEEE International Conference on Complex Medical Engineering, Beijing,China, 2007, pp. 1807–1812.

    Google Scholar 

  16. H.-T. Wu, C.-H. Lee, and A.-B. Liu, “Assessment of endothelial function using arterial pressure signals,” Journal of Signal Processing Systems, vol. 64, pp. 223–232, 2011.

    Article  Google Scholar 

  17. P. Renevey, R. Vetter, J. Krauss, P. Celka, and Y. Depeursinge, “Wrist-located pulse detection using IR signals, activity and nonlinear artifact cancellation,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, pp. 3030–3033 vol.3.

    Google Scholar 

  18. P. Wang, W. Zuo, H. Zhang, and D. Zhang, “Design and implementation of a multi-channel pulse signal acquisition system,” in IEEE International Conference on Biomedical Engineering and Informatics, ChongQing, China, 2012, pp. 1063–1067.

    Google Scholar 

  19. C.-S. Hu, Y.-F. Chung, C.-C. Yeh, and C.-H. Luo, “Temporal and Spatial Properties of Arterial Pulsation Measurement Using Pressure Sensor Array,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, pp. 1–9, 2012.

    Google Scholar 

  20. A. Zhang and H. Wang, “Real-time detection system For photoelectric pulse signals,” in IEEE International Conference on Business Management and Electronic Information Guangzhou,China, 2011, pp. 498–501.

    Google Scholar 

  21. N. Selvaraj, K. H. Shelley, D. G. Silverman, N. Stachenfeld, N. Galante, J. P. Florian, et al., “A Novel Approach Using Time Frequency Analysis of Pulse-Oximeter Data to Detect Progressive Hypovolemia in Spontaneously Breathing Healthy Subjects,” IEEE Transactions on Biomedical Engineering, vol. 58, pp. 2272–2279, 2011.

    Article  Google Scholar 

  22. Q. Guo, K. Wang, D. Zhang, and N. Li, “A wavelet packet based pulse waveform analysis for cholecystitis and nephrotic syndrome diagnosis,” in IEEE International Conference on Wavelet Analysis and Pattern Recognition, Hong Kong, China, 2008, pp. 513–517.

    Google Scholar 

  23. I. Wakabayashi and H. Masuda, “Association of pulse pressure with fibrinolysis in patients with type 2 diabetes,” Thrombosis Research, vol. 121, pp. 95–102, 2007.

    Article  Google Scholar 

  24. N. Arunkumar and K. M. M. Sirajudeen, “Approximate entropy based ayurvedic pulse diagnosis for diabetics – a case study,” in IEEE International Conference on Trendz in Information Sciences and Computing, Chennai,India, 2011, pp. 133–135.

    Google Scholar 

  25. Q. Y. Lee, G. S. H. Chan, S. J. Redmond, P. M. Middleton, E. Steel, P. Malouf, et al., “Classification of low systemic vascular resistance using photoplethysmogram and routine cardiovascular measurements,” in Annual International Conference of IEEE Engineering in Medicine and Biology Society, Buenos Aires, Argentina, 2010, pp. 1930–1933.

    Google Scholar 

  26. R. Murata, H. Kanai, N. Chubachi, and Y. Koiwa, “Measurement of local pulse wave velocity on aorta for noninvasive diagnosis of arteriosclerosis,” in IEEE Annual International Conference of the Engineering in Medicine and Biology Society, Baltimore, MD, 1994, pp. 83–84 vol.1.

    Google Scholar 

  27. A. C. Guyton and J. E. Hall, Textbook of medical physiology. Philadelphia, Pennsylvania: Elsevier, 2006.

    Google Scholar 

  28. ICNIRP, “ICNIRP Statement on Far Infrared Radiation Exposure,” Health Physics, vol. 91, pp. 630–645, 2006.

    Google Scholar 

  29. W. Schèaberle, Ultrasonography in Vascular Diagnosis: A Therapy-oriented Textbook and Atlas. Germany: Springer, 2005.

    Google Scholar 

  30. G. E. Mase, Schaum’s outline of theory and problems of continuum mechanics: McGraw-Hill New York, 1970.

    Google Scholar 

  31. M. Kutz, Biomedical Engineering and Design Handbook: Biomedical Engineering Fundamentals. United States: McGraw-Hill Professional, 2009.

    Google Scholar 

  32. J. R. Womersley, “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,” The Journal of physiology, vol. 127, pp. 553–563, 1955.

    Article  Google Scholar 

  33. L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging. New Jersey: Wiley & Sons, 2012.

    Google Scholar 

  34. S. M. Finkelstein, W. Feske, J. Mock, P. Carlyle, T. Rector, S. Kubo, et al., “Vascular compliance in hypertension,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New Orleans, LA, USA, 1988, pp. 241–242 vol.1.

    Google Scholar 

  35. S. M. Finkelstein, G. E. McVeigh, D. E. Burns, P. F. Carlyle, and J. N. Cohn, “Arterial Vascular Compliance In Heart Failure,” in 12th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Michigan,American, 1990, pp. 548–549.

    Google Scholar 

  36. J. Melo and J. I. Peters, “Low systemic vascular resistance: differential diagnosis and outcome,” Critical Care, vol. 3, pp. pp.71–77, 1999.

    Article  Google Scholar 

  37. D. A. Fedosov, W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis, “Predicting human blood viscosity in silico,” Proceedings of the National Academy of Sciences, vol. 108, pp. 11772–11777, 2011.

    Article  Google Scholar 

  38. W. A. N. Dorland, Illustrated medical dictionary: WB Saunders Company, 2011.

    Google Scholar 

  39. L. Xu, D. Zhang, and K. Wang, “Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms,” IEEE Transactions on Biomedical Engineering, vol. 52, pp. 1973–1975, Nov 2005.

    Article  Google Scholar 

  40. L. Xu, M. Q. H. Meng, R. Liu, and K. Wang, “Robust peak detection of pulse waveform using height ratio,” in International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 2008, pp. 3856–3859.

    Google Scholar 

  41. D. Zhang, W. Zuo, D. Zhang, H. Zhang, and N. Li, “Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features,” Journal of Biomedical Science and Engineering, vol. 3, pp. 361–366, 2010.

    Article  Google Scholar 

  42. C. Xia, Y. Li, J. Yan, Y. Wang, H. Yan, R. Guo, et al., “Wrist Pulse Waveform Feature Extraction and Dimension Reduction with Feature Variability Analysis,” in International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 2008, pp. 2048–2051.

    Google Scholar 

  43. L. Xu, M. Q. H. Meng, K. Wang, W. Lu, and N. Li, “Pulse images recognition using fuzzy neural network,” Expert systems with applications, vol. 36, pp. 3805–3811, 2009.

    Article  Google Scholar 

  44. Y. Wang, X. Wu, B. Liu, Y. Yi, and W. Wang, “Definition and application of indices in Doppler ultrasound sonogram,” Shanghai Journal of Biomedical Engineering, vol. 18, pp. 26–29, Aug 1997.

    Google Scholar 

  45. M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of biological signals,” Physical Review E, vol. 71, pp. 1–18, Feb 2005.

    Google Scholar 

  46. M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of complex physiologic time series,” Physical Review Letters, vol. 89, pp. 1–4, Aug 5 2002.

    Google Scholar 

  47. L. Liu, N. Li, W. Zuo, D. Zhang, and H. Zhang, “Multiscale sample entropy analysis of wrist pulse blood flow signal for disease diagnosis,” in Sino-foreign-interchange Workshop on Intelligence Science and Intelligent Data Engineering, NanJing China, 2012, pp. pp.475–482.

    Google Scholar 

  48. L. Liu, W. Zuo, D. Zhang, N. Li, and H. Zhang, “Classification of Wrist Pulse Blood Flow Signal Using Time Warp Edit Distance,” Medical Biometrics. Springer Berlin Heidelberg, pp. pp. 137–144, 2010.

    Google Scholar 

  49. M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy, “Composite kernel learning,” Machine learning, vol. 79, pp. 73–103, 2010.

    Article  MathSciNet  Google Scholar 

  50. A. G. Lalkhen and A. McCluskey, “Clinical tests: sensitivity and specificity,” Continuing Education in Anaesthesia, Critical Care & Pain, vol. 8, pp. 221–223, 2008.

    Article  Google Scholar 

  51. Q. McNemar, “Note on the sampling error of the difference between correlated proportions or percentages,” Psychometrika, vol. 12, pp. 153–157, June 1947.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, D., Zuo, W., Wang, P. (2018). Comparison of Three Different Types of Wrist Pulse Signals. In: Computational Pulse Signal Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-10-4044-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4044-3_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4043-6

  • Online ISBN: 978-981-10-4044-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics