Skip to main content

Fast Power Curve and Yield Estimation of Pumping Airborne Wind Energy Systems

  • Chapter
  • First Online:
Airborne Wind Energy

Abstract

Besides other aspects such as safety, capital expenditures, lifetime and maintenance of a wind energy converter, the power curve is the defining performance characteristic in order to derive its economic viability. Power curves for horizontal axis wind turbines have been studied, validated and optimized for decades. This study tackles the power curve estimation and optimization of airborne wind energy converters, in particular systems that use the so-called pumping, or Yo-Yo principle. A fast but detailed model of the pumping airborne wind energy system is used to calculate a family of power curves at different fixed altitudes. Based on these power curves a yield estimation method is presented which also considers power losses due to ice accretion, insufficient conditions for take-off and low visibility situations. Furthermore estimated yield values are presented for an example location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009). https://doi.org/10.1016/j.renene.2008.11.001

  2. Baldauf, M., Förstner, J., Klink, S., Reinhardt, T., Schraff, C., Seifert, A., Stephan, K.: Kurze Beschreibung des Lokal-Modells Kürzestfrist COSMO-DE (LMK) und seiner Datenbanken auf dem Datenserver des DWD, DeutscherWetterdienst, Geschäftsbereich Forschung und Entwicklung, Offenbach, Germany, 13 June 2014. http://www.imk-tro.kit.edu/download/LMK_082006.pdf Accessed 12 May 2016

  3. Bastigkeit, I., Rohde, P., Wolken-Möhlmann, G., Gambier, A.: Study on wind resources at mid-altitude. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, p. 83, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation slides available from: http://awec2015.eu/images/presentations/AWEC63_bastigkeit-presentation.pdf

  4. Bormann, A., Ranneberg, M., Kövesdi, P., Gebhardt, C., Skutnik, S.: Development of a Three-Line Ground-Actuated Airborne Wind Energy Converter. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 24, pp. 427–437. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_24

  5. Canale, M., Fagiano, L., Milanese, M.: High Altitude Wind Energy Generation Using Controlled Power Kites. IEEE Transactions on Control Systems Technology 18(2), 279–293 (2010). https://doi.org/10.1109/TCST.2009.2017933

  6. Erhard, M., Strauch, H.: Theory and Experimental Validation of a Simple Comprehensible Model of Tethered Kite Dynamics Used for Controller Design. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 8, pp. 141–165. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_8

  7. Erhard, M., Strauch, H.: Flight control of tethered kites in autonomous pumping cycles for airborne wind energy. Control Engineering Practice 40, 13–26 (2015). https://doi.org/10.1016/j.conengprac.2015.03.001

  8. Fechner, U., Schmehl, R.: Model-Based Efficiency Analysis of Wind Power Conversion by a Pumping Kite Power System. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 14, pp. 249–269. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_14

  9. Fechner, U., Vlugt, R. van der, Schreuder, E., Schmehl, R.: Dynamic Model of a Pumping Kite Power System. Renewable Energy (2015). https://doi.org/10.1016/j.renene.2015.04.028. arXiv:1406.6218 [cs.SY]

  10. Fördergesellschaft Windenergie und andere Erneuerbare Energien (FGW e.V.) http://www.wind-fgw.de. Accessed 12 May 2016

  11. Gambier, A.: Projekt OnKites : Untersuchung zu den Potentialen von Flugwindenergieanlagen (FWEA). Final Project Report, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Bremerhaven, Germany, 2014. 155 pp. https://doi.org/10.2314/GBV:81573428X

  12. Gambier, A., Bastigkeit, I., Nippold, E.: Projekt OnKites II : Untersuchung zu den Potentialen von Flugwindenergieanlagen (FWEA) Phase II. Final Project Report, Fraunhofer Institute for Wind Energy and Energy System Technology IWES, Bremerhaven, Germany, June 2017. 105 pp. https://www.tib.eu/de/suchen/id/TIBKAT%3A1002309476/Projekt-OnKites-IIUntersuchung-zu-den-Potentialen/

  13. German Federal Ministry for Economic Affairs and Energy (BMWi): Gesetz für den Ausbau erneuerbarer Energien. https://www.gesetze-im-internet.de/eeg_2014/anlage_2.html (2014). Accessed 12 May 2016

  14. Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007

    Google Scholar 

  15. International Renewable Energy Agency (IRENA): DTU Global Wind Atlas. http://irena.masdar.ac.ae/?map=103. Accessed 12 May 2016

  16. Jehle, C., Schmehl, R.: Applied Tracking Control for Kite Power Systems. AIAA Journal of Guidance, Control, and Dynamics 37(4), 1211–1222 (2014). https://doi.org/10.2514/1.62380

  17. Kövesdi, P., Dreier, J.-E.: Drive train and method for drives having widely spaced operating points. German Patent WO/2015/032491, 2015

    Google Scholar 

  18. Leosphere: Windcube V2 LiDAR system. http://www.leosphere.com/products/vertical-profiling/windcube-v2-site-assessment-lidar (2016). Accessed 12 May 2016

  19. Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). https://doi.org/10.2514/3.48021

  20. Met Office: Observer’s Handbook. 4th ed. OH Met.O.1028 2000 (Reprint). Met Office (2000). https://digital.nmla.metoffice.gov.uk/archive/sdb:collection%7C0d531225-ff0a-44c9-8c58-a9df90dc9038/

  21. Noom, M. N.: Theoretical Analysis of Mechanical Power Generation by Pumping Cycle Kite Power Systems. M.Sc.Thesis, Delft University of Technology, 2013. http://repository.tudelft.nl/view/ir/uuid:1c1a3e90-11e6-4fe7-8808-8c6a1227dadb/

  22. Panofsky, H. A., Dutton, J. A.: Atmospheric turbulence: models and methods for engineers and scientists. Wiley, New York (1984)

    Google Scholar 

  23. Ranneberg, M.: Sensor Setups for State andWind Estimation for Airborne Wind Energy Converters. (2013). arXiv:1309.1029 [cs.SY]

  24. Ranneberg, M., Bormann, A.: Estimation, Optimisation and Validation of Power Curves for Airborne Wind Energy. In: Schmehl, R. (ed.). Book of Abstracts of the International Airborne Wind Energy Conference 2015, pp. 50–51, Delft, The Netherlands, 15–16 June 2015. https://doi.org/10.4233/uuid:7df59b79-2c6b-4e30-bd58-8454f493bb09. Presentation video recording available from: https://collegerama.tudelft.nl/Mediasite/Play/a5fcf164487546849230da29a8a81f421d

  25. Stull, R. B.: An introduction to boundary layer meteorology, vol. 13. Atmospheric and Oceanographic Sciences Library. Springer Netherlands (1988). https://doi.org/10.1007/978-94-009-3027-8

Download references

Acknowledgements

The wind data was collected by Fraunhofer IWES Northwest within the projects OnKites and OnKites II (Studies of the potential of flight wind turbines, Phase I and II). OnKites (finished 2013, FKZ 0325394) and OnKites II (2014-2016, FKZ 0325394A) are funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) on the basis of a decision by the German Bundestag and project management Projektträger Jülich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Ranneberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranneberg, M., Wölfle, D., Bormann, A., Rohde, P., Breipohl, F., Bastigkeit, I. (2018). Fast Power Curve and Yield Estimation of Pumping Airborne Wind Energy Systems. In: Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1947-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1947-0_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1946-3

  • Online ISBN: 978-981-10-1947-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics