Skip to main content

Attitude Tracking Control of an Airborne Wind Energy System

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

We consider attitude tracking control for an airborne wind energy system, which generates electricity through a turbine mounted on a tethered glider flying at higher altitude than conventional wind turbines. The airborne wind energy system, which efficiently harnesses energy due to high-speed crosswind motion, consists of a rigid glider (also referred as a rigid kite) and constant length tether connected to the ground. Full aircraft dynamics are modeled including a rotational equation of motion. The resulting dynamical system is an under-actuated mechanical system with only rotational control inputs. We first propose an attitude tracking theorem that provides desired tracking signals for rotational motion. A feedback linearization controller and a real time differentiator are designed and implemented on the full glider dynamics to try to achieve the desired angle of attack and sideslip angle. A comparison study is conducted between a Lyapunov-based and attitude tracking control for the same baseline conditions for the airborne wind energy system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. D.: Fundamentals of Aerodynamics. 5th ed. McGraw-Hill (2014)

    Google Scholar 

  2. Baayen, J. H., Ockels, W. J.: Tracking control with adaption of kites. IET Control Theory and Applications 6(2), 182–191 (2012). https://doi.org/10.1049/iet-cta.2011.0037

  3. Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Dynamic nonlinear aeroelastic model of a kite for power generation. AIAA Journal of Guidance, Control and Dynamics 37(5), 1426–1436 (2014). https://doi.org/10.2514/1.G000545

  4. Bosch, A., Schmehl, R., Tiso, P., Rixen, D.: Nonlinear Aeroelasticity, Flight Dynamics and Control of a Flexible Membrane Traction Kite. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 17, pp. 307–323. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_17

  5. Breukels, J., Schmehl, R., Ockels, W.: Aeroelastic Simulation of Flexible Membrane Wings based on Multibody System Dynamics. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 16, pp. 287–305. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_16

  6. Canale, M., Fagiano, L., Milanese, M.: High Altitude Wind Energy Generation Using Controlled Power Kites. IEEE Transactions on Control Systems Technology 18(2), 279–293 (2010). https://doi.org/10.1109/TCST.2009.2017933

  7. Diehl, M.: Airborne Wind Energy: Basic Concepts and Physical Foundations. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 1, pp. 3–22. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_1

  8. Erhard, M., Strauch, H.: Control of Towing Kites for Seagoing Vessels. IEEE Transactions on Control Systems Technology 21(5), 1629–1640 (2013). https://doi.org/10.1109/TCST.2012.2221093

  9. Etkin, B., Reid, L. D.: Dynamics of Flight: Stability and Control. John Wiley & Sons, New York (1996)

    Google Scholar 

  10. Fagiano, L., Milanese, M., Piga, D.: Optimization of airborne wind energy generators. International Journal of Robust and Nonlinear Control 22(18), 2055–2083 (2011). https://doi.org/10.1002/rnc.1808

  11. Fagiano, L., Zgraggen, A. U., Morari, M., Khammash, M.: Automatic crosswind flight of tethered wings for airborne wind energy:modeling, control design and experimental results. IEEE Transactions on Control System Technology 22(4), 1433–1447 (2014). https://doi.org/10.1109/TCST.2013.2279592

  12. Fagiano, L., Huynh, K., Bamieh, B., Khammash, M.: On sensor fusion for airborne wind energy systems. IEEE Transactions on Control Systems Technology 22(3), 930–943 (2014). https://doi.org/10.1109/TCST.2013.2269865

  13. Fagiano, L., Milanese, M., Razza, V., Bonansone, M.: High AltitudeWind Energy for Sustainable Marine Transportation. IEEE Transactions on Intelligent Trasportation Systems 13(2), 781–791 (2012). https://doi.org/10.1109/TITS.2011.2180715

  14. Fechner, U., Vlugt, R. van der, Schreuder, E., Schmehl, R.: Dynamic Model of a Pumping Kite Power System. Renewable Energy (2015). https://doi.org/10.1016/j.renene.2015.04.028. arXiv:1406.6218 [cs.SY]

  15. Groot, S. G. C. de, Breukels, J., Schmehl, R., Ockels, W. J.: Modeling Kite Flight Dynamics Using a Multibody Reduction Approach. AIAA Journal of Guidance, Control and Dynamics 34(6), 1671–1682 (2011). https://doi.org/10.2514/1.52686

  16. Gros, S., Zanon, M., Diehl, M.: A relaxation strategy for the optimization of Airborne Wind Energy systems. In: Proceedings of the 2013 European Control Conference (ECC), pp. 1011–1016, Zurich, Switzerland, 17–19 July 2013

    Google Scholar 

  17. Gros, S., Zanon, M., Diehl, M.: Control of Airborne Wind Energy Systems Based on Nonlinear Model Predictive Control & Moving Horizon Estimation. In: Proceedings of the European Control Conference (ECC13), Zurich, Switzerland, 17–19 July 2013

    Google Scholar 

  18. Gros, S., Diehl, M.: Modeling of Airborne Wind Energy Systems in Natural Coordinates. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy, Green Energy and Technology, Chap. 10, pp. 181–203. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-39965-7_10

  19. Ilzhöfer, A., Houska, B., Diehl, M.: Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control 17(17), 1590–1599 (2007). https://doi.org/10.1002/rnc.1210

  20. Jehle, C., Schmehl, R.: Applied Tracking Control for Kite Power Systems. AIAA Journal of Guidance, Control, and Dynamics 37(4), 1211–1222 (2014). https://doi.org/10.2514/1.62380

  21. Khalil, H.: Nonlinear Systems. 3rd ed. Prentice Hall, Upper Saddle River, NJ (2001)

    Google Scholar 

  22. Li, H., Olinger, D. J., Demetriou, M. A.: Attitude Tracking Control of a GroundGen Airborne Wind Energy System. In: Proceedings of the 2016 American Control Conference, Boston, MA, USA, 6–8 July 2016. https://doi.org/10.1109/ACC.2016.7525565

  23. Li, H., Olinger, D. J., Demetriou, M. A.: Attitude Tracking Control of an Airborne Wind Energy System. In: Proceedings of the 2015 European Control Conference, Linz, Austria, 15–17 July 2015. https://doi.org/10.1109/ECC.2015.7330752

  24. Li, H., Olinger, D. J., Demetriou, M. A.: Control of a Tethered Undersea Kite Energy System Using a Six Degree of Freedom Model. In: Proceedings of the 2015 IEEE International Conference on Decision and Control (CDC), Osaka, Japan, 15–18 Dec 2015. https://doi.org/10.1109/CDC.2015.7402309

  25. Li, H., Olinger, D. J., Demetriou, M. A.: Control of an Airborne Wind Energy System using an Aircraft Dynamics Model. In: Proceedings of the 2015 American Control Conference, Chicago, IL, USA, 1–3 July 2015. https://doi.org/10.1109/ACC.2015.7171090

  26. Manwell, J. F., McGowan, J. G., Rogers, A. L.: Wind Energy Explained: Theory, Design and Application. 2nd ed. John Wiley & Sons, Ltd., Chichester (2009). https://doi.org/10.1002/9781119994367

  27. Olinger, D., Wang, Y.: Hydrokinetic energy harvesting using tethered undersea kites. Journal of Renewable and Sustainable Energy 7(4), 043114 (2015). https://doi.org/10.1063/1.4926769

  28. Williams, P., Lansdorp, B., Ockels, W. J.: Nonlinear Control and Estimation of a Tethered Kite in Changing Wind Conditions. AIAA Journal of Guidance, Control and Dynamics 31(3) (2008). https://doi.org/10.2514/1.31604

  29. Williams, P., Lansdorp, B., Ockels, W.: Optimal Crosswind Towing and Power Generation with Tethered Kites. AIAA Journal of Guidance, Control, and Dynamics 31(1), 81–93 (2008). https://doi.org/10.2514/1.30089

  30. Zanon, M., Gros, S., Andersson, J., Diehl, M.: Airborne Wind Energy Based on Dual Airfoils. IEEE Transactions on Control Systems Technology 21(4), 1215–1222 (2013). https://doi.org/10.1109/TCST.2013.2257781

  31. Zanon, M., Horn, G., Gros, S., Diehl, M.: Control of Dual-Airfoil Airborne Wind Energy systems based on nonlinear MPC and MHE. In: European Control Conference, pp. 1801–1806, Strasbourg, France, 17–19 July 2013. https://doi.org/10.1109/ECC.2014.6862238

  32. Zgraggen, A. U., Fagiano, L., Morari, M.: Automatic Retraction Phase of Airborne Wind Energy Systems. Proceedings of the 19th IFAC World Congress 47(3), 5826–5831 (2014). https://doi.org/10.3182/20140824-6-ZA-1003.00624

  33. Zgraggen, A. U., Fagiano, L., Morari, M.: On Modeling and Control of the Retraction Phase for Airborne Wind Energy Systems. In: Proceedings of the 53rd IEEE Conference on Decision and Control, pp. 5686–5691, Los Angeles, CA, USA, 15–17 Dec 2014. https://doi.org/10.1109/CDC.2014.7040279

  34. Zgraggen, A. U., Fagiano, L., Morari, M.: Real-Time Optimization and Adaptation of the Crosswind Flight of Tethered Wings for Airborne Wind Energy. IEEE Transactions on Control Systems Technology 23(2), 434–448 (2015). https://doi.org/10.1109/TCST.2014.2332537

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Olinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H., Olinger, D.J., Demetriou, M.A. (2018). Attitude Tracking Control of an Airborne Wind Energy System. In: Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-1947-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1947-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1946-3

  • Online ISBN: 978-981-10-1947-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics