Skip to main content

Part of the book series: SpringerBriefs in Plant Science ((BRIEFSPLANT))

  • 448 Accesses

Abstract

Apocarotenoids are oxidative cleavage products of carotenoids. These molecules play vital physiological and developmental roles in plants. Besides this, apocarotenoids also hold tremendous pharmacological importance. Apocarotenoids are ubiquitously found across plant kingdom, but Crocus sativus (saffron) is the only source of some unique and economically important apocarotenoids. These apocarotenoids include crocin, picrocrocin, and safranal which besides having pharmacological importance are also responsible for the color, flavor, and aroma of the world’s costliest spice (saffron). Apocarotenoid biosynthesis in C. sativus is regulated throughout the life cycle with active changes in apocarotenoid composition of stigma due to developmental stage-specific requirements and in response to external environmental cues. Although the biosynthesis of these unique C. sativus apocarotenoids has been elucidated to a greater extent, there are still some missing links in the pathway. Besides, only a few studies have been carried out on the regulation, tissue- and developmental-specific accumulation, and transport of apocarotenoids in C. sativus as well as in other plants. The present review is an organized attempt to gain insights about the biosynthesis, regulation, and transport of apocarotenoids in C. sativus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel W-J, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahraze O, Rubio-Moraga A, López RC, Gómez-Gómez L (2009) The expression of a chromoplast-specific lycopene beta cyclase gene is involved in the high production of saffron’s apocarotenoid precursors. J Exp Bot 61:105–119

    Google Scholar 

  • Alonso GL, Salinas MR, Garijo J, Sánchez-Fernández MA (2001) Composition of crocins and picrocrocin from Spanish saffron (Crocus sativus L.). J Food Qual 24:219–233

    Article  CAS  Google Scholar 

  • Ashraf N, Jain D, Vishwakarma RA (2015) Identification, cloning and characterization of an ultrapetala transcription factor CsULT1 from Crocus: a novel regulator of apocarotenoid biosynthesis. BMC plant biology 15:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auldridge ME, McCarty DR, Klee HJ (2006a) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321

    Article  PubMed  CAS  Google Scholar 

  • Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006b) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45:982–993

    Article  PubMed  CAS  Google Scholar 

  • Azuma H et al (2002) Floral scent chemistry of mangrove plants. J Plant Res 115:47–53

    Article  PubMed  CAS  Google Scholar 

  • Baba SA, Malik AH, Wani ZA, Mohiuddin T, Shah Z, Abbas N, Ashraf N (2015a) Phytochemical analysis and antioxidant activity of different tissue types of Crocus sativus and oxidative stress alleviating potential of saffron extract in plants, bacteria, and yeast. S Afr J Bot 31(99):80–87

    Article  CAS  Google Scholar 

  • Baba SA, Mohiuddin T, Basu S, Swarnkar MK, Malik AH, Wani ZA, Abbas N, Singh AK, Ashraf N (2015b) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics 16(1):1

    Article  CAS  Google Scholar 

  • Baba SA, Jain D, Abbas N, Ashraf N (2015c) Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery. J Plant Physiol 189:114–125

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, Suire C, Mutterer J, Camara B (2003) Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell 15:47–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouvier F, Isner JC, Dogbo O, Camara B (2005) Oxidative tailoring of carotenoids: a prospective towards novel functions in plants. Trends Plant Sci 10:187–194

    Article  PubMed  CAS  Google Scholar 

  • Brandi F, Bar E, Mourgues F, Horváth G, Turcsi E, Giuliano G, Liverani A, Tartarini S, Lewinshon E, Rosati C (2011) Study of ‘RedHaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 11:1–24

    Article  CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (eds) (2009) Carotenoids volume 5: nutrition and health, vol 5. Springer Science & Business Media

    Google Scholar 

  • Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Nat Prod Rep 28:1883–1896

    Article  PubMed  CAS  Google Scholar 

  • Camara B, Hugueney P, Bouvier F, Kuntz M, Monéger R (1995) Biochemistry and molecular biology of chromoplasts development. Int Rev Cytol 163:175–247

    Article  PubMed  CAS  Google Scholar 

  • Campbell EJ, Schenk PM, Kazan K, Penninckx IA, Anderson JP, Maclean DJ, Cammue BP, Ebert PR, Manners JM (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133:1272–1284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmona M, Zalacain A, Sánchez A, Novella J, Alonso G (2006) Crocetin esters, picrocrocin and its related compounds present in Crocus sativus stigmas and Gardenia jasminoides fruits. Tentative identification of seven new compounds by LC–ESI-MS. J Agric Food Chem 54:973

    Article  PubMed  CAS  Google Scholar 

  • Castillo R, Fernández JA, Gómez-Gómez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol 139(2):674–689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cazzonelli CI et al (2009) Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell 21(1):39–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15(5):266–274

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary N et al (2010) Carotenoid biosynthesis genes in rice: structural analysis, genome-wide expression profiling and phylogenetic analysis. Mol Genet Genomics 283:13–33

    Article  PubMed  CAS  Google Scholar 

  • Corona V et al (1996) Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J 9:505–512

    Article  PubMed  CAS  Google Scholar 

  • Cote F, Cormier F, Dufresne C et al (2001) A highly specific glucosyltransferase is involved in the synthesis of crocetin glucosylesters in Crocus sativus cultured cells. J Plant Physiol 158:553–560

    Article  CAS  Google Scholar 

  • Crotty WJ, Ledbetter MC (1973) Membrane continuities involving chloroplasts and other organelles in plant cells. Science 182(4114):839–841

    Article  PubMed  CAS  Google Scholar 

  • Curro P, Lanuza F, Micali G (1986) Valutazione Della frazione volatile dello zafferano mediante gascromatografia dello spazio di testa. Rass Chimica 6:331–334

    Google Scholar 

  • Davies KM (2007) Genetic modification of plant metabolism for human health benefits. Mutat Res 622:122–137

    Article  PubMed  CAS  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  PubMed  CAS  Google Scholar 

  • Dhingra V, Seshadri T, Mukerjee S (1975) Minor carotenoid glycosides from saffron (Crocus sativus). Ind J Chem 13:339–341

    CAS  Google Scholar 

  • Donaldson JMI et al (1990) Floral attractants for the Cetoniinae and Rutelinae (Coleoptera: Scarabaeidae). J Econ Entomol 83:1298–1305

    Article  CAS  Google Scholar 

  • Dong H et al (2007) The Arabidopsis spontaneous cell death1 gene, encoding a zeta-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Res 17:458–470

    Article  PubMed  CAS  Google Scholar 

  • Dufresne C, Cormier F, Dorion S, Niggli UA, Pfister S, Pfander H (1999) Glycosylation of encapsulated crocetin by a Crocus sativus L. cell culture. Enzym Microb Technol 24(8):453–462

    Article  CAS  Google Scholar 

  • Eroglu A, Harrison EH (2013) Carotenoid metabolism in mammals, including man: formation, occurrence, and function of apocarotenoids. J Lipid Res 54:1719–1730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang J et al (2008) Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J 54:177–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farre G et al. (2010) Travel advice on the road to carotenoids in plants. Plant Sci 179:28–48

    Article  CAS  Google Scholar 

  • Farré-Armengol G, Filella I, Llusia J, Peñuelas J (2013) Floral volatile organic compounds: between attraction and deterrence of visitors under global change. Perspect Plant Ecol Evol Syst 15(1):56–67

    Article  Google Scholar 

  • Flath RA et al (1994) Alpha-ionol as attractant for trapping Batrocera latifrons (Diptera: Tephritidae). J Econ Entomol 87:1470–1476

    Article  CAS  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  PubMed  CAS  Google Scholar 

  • Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A et al (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A 111:12246–12251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Nouwmeester H, Becard G, Beveridge CA, Huang FC, Molnár P, Schwab W (2009) Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot 60:3011–3022

    Article  CAS  Google Scholar 

  • Gonzalez-Jorge S, Ha S, Magallanes-Lundback M, Gilliland LU, Zhou A, Lipka AE, Nguyen YN, Angelovici R, Lin H, Cepela J, Little H, hBuell CR, Gore MA, Della-Penna D (2013) Carotenoid cleavage dioxygenase 4 is a negative regulator of b-carotene content in Arabidopsis seeds. Plant Cell 25:4812–4826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregory MJ, Menary RC, Davies NW (2005) Effect of drying temperature and air flow on the production and retention of secondary metabolites in saffron. J Agric Food Chem 53:5969–5975

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration; where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11

    Article  PubMed  CAS  Google Scholar 

  • Himeno H, Sano K (1987) Synthesis of crocin, picrocrocin and safranal by saffron stigma-like structures proliferated in vitro. Agric Biol Chem 9(51):2395–2400

    Google Scholar 

  • Howitt CA et al (2009) Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 9:363–376

    Article  PubMed  CAS  Google Scholar 

  • Isaacson T et al (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Isaacson T et al (2004) Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol 136:4246–4255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13:1095–1107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamoda S, Saburi Y (1993) Biotechnol Biochem 57:926–930

    Article  CAS  Google Scholar 

  • Kang J et al (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanno Y et al (2012) Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci U S A 109:9653–9658

    Article  PubMed  PubMed Central  Google Scholar 

  • Khun R, Winterstein A (1934) Die Dihydroverbindung der isomeren Bixine und die Elektronen-Konfiguration der Polyene. Ber Dtsch Chem Ges 67:344–347

    Article  Google Scholar 

  • Klingner A, Bothe H, Wray V, Marner FJ (1995) Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochemistry 38:53–55

    Article  CAS  Google Scholar 

  • Kloer DP, Schulz GE (2006) Structural and biological aspects of carotenoid cleavage. Cell Mol Life Sci CMLS 63(19–20):2291–2303

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483(7389):341–344

    Article  PubMed  CAS  Google Scholar 

  • Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Asp Med 26:459–516

    Article  CAS  Google Scholar 

  • Kuromori T et al (2010) ABC transporter At ABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107:2361–2366

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Lin G, Kwan YW, Min ZD (1999) Simultaneous quantification of five major biologically active ingredients of saffron by high-performance liquid chromatography. J Chromatogr A 849:349–355

    Article  PubMed  CAS  Google Scholar 

  • Li F et al (2007) Maize Y9 encodes a product essential for 15-cis-zeta- carotene isomerization. Plant Physiol 144:1181–1189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li F et al (2008) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress induced root carotenogenesis. Plant Physiol 146:1333–1345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao YH, Houghton PJ, Hoult JRS (1999) Novel and known constituents from Buddleja species and their activity against leukocyte eicosanoid generation. J Nat Prod 62(9):1241–1245

    Article  PubMed  CAS  Google Scholar 

  • Lücker J, Schwab W, Franssen MC, Van Der Plas LH, Bouwmeester HJ, Verhoeven HA (2004) Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-transisopiperitenol by tobacco. Plant J 39:135–145

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Li J, Zhao J, Zhou H, Ren F, Wang L, Gu C, Liao L, Han Y (2014) Inactivation of a gene encoding carotenoid cleavage dioxygenase (CCD4) leads to carotenoid-based yellow coloration of fruit flesh and leaf midvein in peach. Plant Mol Biol Rep 32:246–257

    Article  CAS  Google Scholar 

  • Maggi L, Carmona M, del Campo CP, Kanakis CD, Anastasaki E, Tarantilis PA (2009) Worldwide market screening of saffron volatile composition. J Sci Food Agric 89:1950–1954

    Article  CAS  Google Scholar 

  • McQuate GT, Peck SL (2001) Enhancement of attraction of alpha-ionol to male Bactrocera latifrons (Diptera: Tephritidae) by addition of a synergist, cade oil. J Econ Entomol 94:39–46

    Article  PubMed  CAS  Google Scholar 

  • Messing SAJ, Gabelli SB, Echeverria I, Vogel JT, Guan JC, Tan BC, Klee HJ, McCarty DL, Amzel LM (2010) Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell 22(9):2970–2980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moiseyev G, TY, Chen Y, Gentleman S, Redmond TM, Crouch RK, Ma J (2006) J Biol Chem 281:2835–2840

    Article  PubMed  CAS  Google Scholar 

  • Moraga AR, Nohales PF, Pérez JAF, Gómez-Gómez L (2004) Glucosylation of the saffron apocarotenoid crocetin by a glucosyltransferase isolated from Crocus sativus stigmas. Planta 219(6):955–966

    Article  PubMed  CAS  Google Scholar 

  • Namin MH, Ebrahimzadeh H, Ghareyazie B, Radjabian T, Gharavi S, Tafreshi N (2009) In vitro expression of apocarotenoid genes in Crocus sativus L. Afr J Biotechnol 8(20):5378–5382

    CAS  Google Scholar 

  • Oberhauser V, Voolstra O, Bangert A, Von Lintig J, Vogt JK (2008) NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide. Proc Natl Acad Sci 105(48):19000–19005

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohara K, Ujihara T, Endo T, Sato F, Yazaki K (2003) Limonene production in tobacco with Perilla limonene synthase cDNA. J Exp Bot 54:2635–2642

    Article  PubMed  CAS  Google Scholar 

  • Park H et al (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasare SA, Ducreux LJM, Morris WL, Campbell R, Sharma SK, Roumeliotis E, Kohlen W, van der Krol S, Bramley PM, Roberts AG, Fraser PD, Taylor MA (2013) The role of the potato (Solanum tuberosum) CCD8 gene in stolon and tuber development. New Phytol 198:1108–1120

    Article  PubMed  CAS  Google Scholar 

  • Pfander H, Wittwer F (1975) Carotenoid composition in safran. Helv Chim Acta 58:2233–2236

    Article  PubMed  CAS  Google Scholar 

  • Pfister S, Meyer P, Steck A, Pfander H (1996) Isolation and structure elucidation of carotenoid-glycosyl esters in Gardenia fruits (Gardenia jasminoides Ellis) and saffron (Crocus sativus Linne). J Agric Food Chem 44:2612–2615

    Article  CAS  Google Scholar 

  • Poliakov E, gentleman S, Cunningham FX jr, Miller-lhli Nj, Remond TM (2005) Key role of conserved histidine in recombinant mouse beta-carotene 15 15 monooxygenase-1. JBC 280:29217–29223

    Google Scholar 

  • Raina BL, Agarwal SG, Bhatia AK, Gaur GS (1996) Changes in pigments and volatiles of saffron (Crocus sativus L.) during processing and storage. J Sci Food Agric 71:27–32

    Article  CAS  Google Scholar 

  • Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55(3):207–216

    Article  PubMed  CAS  Google Scholar 

  • Rubio A, Rambla JL, Santaella M, Gomez MD, Orzaez D, Granell A, Gómez-Gómez L (2008) Cytosolic and plastoglobule-targeted carotenoid dioxygenases from Crocus sativus are both involved in beta-ionone release. J Biol Chem 283:24816–24825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubio-Moraga A, Trapero A, Ahrazem O, Gómez-Gómez L (2010) Crocins transport in Crocus sativus: the long road from a senescent stigma to a newborn corm. Phytochemistry 71(13):1506–1513

    Article  PubMed  CAS  Google Scholar 

  • Rubio-Moraga A, Ahrazem O, Pérez-Clemente RM, Gómez-Cadenas A, Yoneyama K, López-Ráez JA, Molina RV, Gómez-Gómez L (2014) Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC Plant Biol 14(1):171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991–1997

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Qin XQ, Loewen MC (2004) The biochemical characterization of two carotenoid cleavage enzymes form Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem 279:46940–46945

    Article  PubMed  CAS  Google Scholar 

  • Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004a) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavour volatiles β-ionone, pseudoionone and geranylacetone. Plant J 40:882–892

    Article  PubMed  CAS  Google Scholar 

  • Simkin AJ, Underwood BA, Auldridge M, Loucas HM, Shibuya K, Schmelz E, Clark DG, Klee HJ (2004b) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of b-ionone, a fragrance volatile of Petunia flowers. Plant Physiol 136:3504–3514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Speranza G, Dada G, Manitto P, Monti D, Gramatica P (1984) 13-cis-crocin: a new crocinoid of saffron. Gazz Chim Ital 114:189–192

    CAS  Google Scholar 

  • Sui X, Kiser PD, Lintig JV, Palczewski K (2013) Structural basis of carotenoid cleavage: from bacteria to mammals. Arch Biochem Biophys 539(2):203–213

    Article  PubMed  CAS  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JAD, McCarty DR (1997) Proc Natl Acad Sci 94:12235–12240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography–UV–visible photodiode-array detection-mass spectrometry. J Chromatogr A 699:107–118

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Ortiz G, Huq E, Rodríguez-Concepción M (2010) Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. PNAS 107:11626–11631

    Article  PubMed  PubMed Central  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  PubMed  CAS  Google Scholar 

  • van den Brûle S, Müller A, Fleming AJ, Smart CC (2002) The ABC transporter SpTUR2 confers resistance to the antifungal diterpene sclareol. Plant J 30:649–662

    Article  PubMed  Google Scholar 

  • Vaughn KC, Duke SO (1981) Evaginations from the plastid envelope: a method for transfer of substances from plastid ton vacuole. Cytobios 32:89–95

    Google Scholar 

  • Verma RS, Middha D (2010) Analysis of saffron (Crocus sativus L. stigma) components by LC–MS–MS. Chromatographia 71(1–2):117–123

    Article  CAS  Google Scholar 

  • Verrier PJ et al (2008) Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  PubMed  CAS  Google Scholar 

  • Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61(2):107–114

    Article  PubMed  CAS  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

    Article  PubMed  CAS  Google Scholar 

  • Walter MH, Fester T, Strack D (2000) Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the “yellow pigment” and other apocarotenoids. Plant J 21:571–578

    Article  PubMed  CAS  Google Scholar 

  • Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. Planta 232:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wang SC, Tseng TY, Huang CM, Tsai TH (2004) Gardenia herbal active constituents: applicable separation procedures. J Chromatogr B 812:193–202

    Article  CAS  Google Scholar 

  • Wei S, Hannoufa A, Soroka J, Xu N, Li X, Zebarjadi A, Gruber M (2011) Enhanced β-ionone emission in Arabidopsis over-expressing AtCCD1 reduces feeding damage in vivo by the crucifer flea beetle. Environ Entomol 40(6):1622–1630

    Article  PubMed  CAS  Google Scholar 

  • Welsch R, Maass D, Voegel T, DellaPenna D, Beyer P (2007) Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol 145:1073–1085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welsch R et al (2008) A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147:367–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winterstein E, Teleczky J (1922) Constituents of the saffron. I. Picrocrocin. Helv Chimica Acta 5:376–400

    Article  CAS  Google Scholar 

  • Yang B, Guo Z, Liu R (2005) Crocin synthesis mechanism in Crocus sativus. Tsinghua Sci Technol 10(5):567–572

    Article  CAS  Google Scholar 

  • Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8(3):301–307

    Article  PubMed  CAS  Google Scholar 

  • Yu F et al (2007) Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ 30:350–365

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Baba, S.A., Ashraf, N. (2016). Apocarotenoid Biosynthesis in Crocus sativus L.. In: Apocarotenoids of Crocus sativus L: From biosynthesis to pharmacology. SpringerBriefs in Plant Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-1899-2_1

Download citation

Publish with us

Policies and ethics