Skip to main content

Imaging in Differentiated Thyroid Cancer

  • Chapter
  • First Online:
Evidence-Based Endocrine Surgery
  • 609 Accesses

Abstract

It cannot be overemphasized that manual palpation of thyroid nodules is extremely variable between even experienced clinicians and as such imaging with ultrasound, especially surgeon-performed ultrasound, has become essential to the evaluation of the thyroid gland. Surgeon-performed ultrasound is rapidly becoming an extension of the physical examination, adding images containing objective information to the subjective palpation by the surgeon’s hands. Various imaging tools play key roles in various phases in treatment of thyroid cancer. Various imaging modalities comprise of:

  • High-resolution ultrasonography

  • Contrast-enhanced computerized tomography

  • Magnetic resonance tomography

  • Radioiodine scans

  • Positron emission tomography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    Article  PubMed  Google Scholar 

  2. Ezzat S, Sarti DA, Cain DR, Braunstein GD. Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med. 1994;154(16):1838–40.

    Article  CAS  PubMed  Google Scholar 

  3. Anil G, Hegde A, Chong FH. Thyroid nodules: risk stratification for malignancy with ultrasound and guided biopsy. Cancer Imaging. 2011;11:209–23. https://doi.org/10.1102/1470-7330.2011.0030. Review

    Article  PubMed  PubMed Central  Google Scholar 

  4. Papini E, Guglielmi R, Bianchini A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab. 2002;87(5):1941–6.

    Article  CAS  PubMed  Google Scholar 

  5. Wienke JR, Chong WK, Fielding JR, et al. Sonographic features of benign thyroid nodules: interobserver reliability and overlap with malignancy. J Ultrasound Med. 2003;22(10):1027–31.

    Article  PubMed  Google Scholar 

  6. Cerbone G, Spiezia S, Colao A, et al. Power Doppler improves the diagnostic accuracy of color Doppler ultrasonography in cold thyroid nodules: follow-up results. Horm Res. 1999;52(1):19–24.

    CAS  PubMed  Google Scholar 

  7. Fish SA, Langer JE, Mandel SJ. Sonographic imaging of thyroid nodules and cervical lymph nodes. Endocrinol Metab Clin North Am 2008;37(2):401–417., ix. doi: https://doi.org/10.1016/j.ecl.2007.12.003. Review.

    Article  PubMed  Google Scholar 

  8. Jeh SK, Jung SL, Kim BS, et al. Evaluating the degree of conformity of papillary carcinoma and follicular carcinoma to the reported ultrasonographic findings of malignant thyroid tumor. Korean J Radiol. 2007;8(3):192–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cappelli C, Pirola I, Cumetti D, et al. Is the anteroposterior and transverse diameter ratio of nonpalpable thyroid nodules a sonographic criteria for recommending fine-needle aspiration cytology? Clin Endocrinol (Oxf). 2005;63(6):689–93.

    Article  Google Scholar 

  10. Kuna SK, Bracic I, Tesic V, et al. Ultrasonographic differentiation of benign from malignant neck lymphadenopathy in thyroid cancer. J Ultrasound Med. 2006;25(12):1531–7. quiz 1538–40

    Article  PubMed  Google Scholar 

  11. Horvath E, Majlis S, Rossi R, Franco C, Niedmann JP, Castro A, et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009;94(5):1748–51.

    Article  CAS  PubMed  Google Scholar 

  12. Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, et al. Thyroid imaging reporting and data system for 257 US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260(3):892–9.

    Article  PubMed  Google Scholar 

  13. Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917–22. Epub 2007 May 29

    Article  CAS  PubMed  Google Scholar 

  14. Choi JS, Kim J, Kwak JY, Kim MJ, Chang HS, Kim EK. Preoperative staging of papillary thyroid carcinoma: comparison of ultrasound imaging and CT. Am J Roentgenol. 2009;193(3):871–8. https://doi.org/10.2214/AJR.09.2386.

    Article  Google Scholar 

  15. Yoon DY, Chang SK, Choi CS, Yun EJ, Seo YL, Nam ES, Cho SJ, Rho YS, Ahn HY. The prevalence and significance of incidental thyroid nodules identified on computed tomography. J Comput Assist Tomogr. 2008;32(5):810–5. https://doi.org/10.1097/RCT.0b013e318157fd38.

    Article  PubMed  Google Scholar 

  16. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133. https://doi.org/10.1089/thy.2015.0020. Review

    Article  PubMed  PubMed Central  Google Scholar 

  17. Takashima S, Takayama F, Wang J, Kobayashi S, Kadoya M. Using MR imaging to predict invasion of the recurrent laryngeal nerve by thyroid carcinoma. Am J Roentgenol. 2003;180:837–42. https://doi.org/10.2214/ajr.180.3.1800837.

    Article  Google Scholar 

  18. Wang JC, Takashima S, Takayama F, et al. Tracheal invasion by thyroid carcinoma: prediction using MR imaging. Am J Roentgenol. 2001;177:929–36. https://doi.org/10.2214/ajr.177.4.1770929.

    Article  CAS  Google Scholar 

  19. Roychowdhury S, Loevner LA, Yousem DM, Chalian A, Montone KT. MR imaging for predicting neoplastic invasion of the cervical esophagus. Am J Neuroradiol. 2000;21:1681–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yousem DM, Hatabu H, Hurst RW, et al. Carotid artery invasion by head and neck masses: prediction with MR imaging. Radiology. 1995;195:715–20.

    Article  CAS  PubMed  Google Scholar 

  21. Shetty SK, Maher MM, Hahn PF, Halpern EF, Aquino SL. Significance of incidental thyroid lesions detected on CT: correlation among CT, sonography, and pathology. Am J Roentgenol. 2006;187(5):1349–56. Erratum in: Am J Roentgenol. 2007;188(1):8.

    Article  PubMed  Google Scholar 

  22. Nimmons GL, Funk GF, Graham MM, Pagedar NA. Urinary iodine excretion after contrast computed tomography scan: implications for radioactive iodine use. JAMA Otolaryngol Head Neck Surg. 2013;139(5):479–82. https://doi.org/10.1001/jamaoto.2013.2552.

    Article  PubMed  Google Scholar 

  23. Sohn SY, Choi JH, Kim NK, Joung JY, Cho YY, Park SM, Kim TH, Jin SM, Bae JC, Lee SY, Chung JH, Kim SW. The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid. 2014;24(5):872–7. https://doi.org/10.1089/thy.2013.0238. Epub 2014 Mar 6

    Article  CAS  PubMed  Google Scholar 

  24. Padovani RP, Kasamatsu TS, Nakabashi CC, Camacho CP, Andreoni DM, Malouf EZ, Marone MM, Maciel RM, Biscolla RP. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid. 2012;22(9):926–30. https://doi.org/10.1089/thy.2012.0099. Epub 2012 Jul 24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mishra A, Pradhan PK, Gambhir S, Sabaretnam M, Gupta A, Babu S. Preoperative contrast-enhanced computerized tomography should not delay radioiodine ablation in differentiated thyroid carcinoma patients. J Surg Res. 2015;193(2):731–7. https://doi.org/10.1016/j.jss.2014.07.065. Epub 2014 Aug 12

    Article  PubMed  Google Scholar 

  26. Lee SY, Chang DL, He X, Pearce EN, Braverman LE, Leung AM. Urinary iodine excretion and serum thyroid function in adults after iodinated contrast administration. Thyroid. 2015;25(5):471–7. https://doi.org/10.1089/thy.2015.0024. Epub 2015 Mar 23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mayilvaganan, S., Chekavar, A., Pradhan, R., Agarwal, A. (2018). Imaging in Differentiated Thyroid Cancer. In: Parameswaran, R., Agarwal, A. (eds) Evidence-Based Endocrine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-1124-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1124-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1123-8

  • Online ISBN: 978-981-10-1124-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics