Skip to main content

Antiferromagnetic-to-Ferromagnetic Transition in FeRh Thin Films with Strain Induced Nanostructure

  • Conference paper
  • First Online:
Functional Nanostructures and Sensors for CBRN Defence and Environmental Safety and Security
  • 396 Accesses

Abstract

The formation of a magnetic nanostructure is reported in FeRh thin films showing the antiferromagnetic-to-ferromagnetic (AF-to-FM) transition known from the B2 ordered equiatomic phase. The magnetic nanostructure is formed due to a certain epitaxial strain-adaption process, leading to phase separation into a ferromagnetic and a paramagnetic phase. An additional post-annealing step finally creates the high degree of chemical ordering in the cubic phase needed to establish the AFM ground state and the AF-to-FM transition, as seen by SQUID magnetometry and 57Fe conversion electron Mössbauer spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fallot M (1938) Ann Phys 10:291

    Article  Google Scholar 

  2. Fallot M, Horcart R (1939) Rev Sci 77:498

    Google Scholar 

  3. Walter PHL (1964) J Appl Phys 35:938

    Article  ADS  Google Scholar 

  4. Kouvel JS (1966) J Appl Phys 37:1257

    Article  ADS  Google Scholar 

  5. Barua R, Jiménez-Villacorta F, Lewis LH (2013) Appl Phys Lett 103:102407

    Article  ADS  Google Scholar 

  6. McKinnon JB, Melville D, Lee EW (1970) J Phys C Solid State Phys 3:S46

    Article  ADS  Google Scholar 

  7. Maat S, Thiele J-U, Fullerton EE (2005) Phys Rev B 72:214432

    Article  ADS  Google Scholar 

  8. Ohtake K, Mitsui Y, Takahashi K, Onodera R, Kimura S, Watanabe K, Koyama K (2014) IEEE Trans Magn 50:1001404

    Google Scholar 

  9. Cherifi RO, Ivanovskaya V, Phillips LC, Zobelli A, Infante IC, Jacquet E, Garcia V, Fusil S, Briddon PR, Guiblin N, Mougin A, Ünal AA, Kronast F, Valencia S, Dkhil B, Barthélémy A, Bibes M (2014) Nat Mater 13:345

    Article  ADS  Google Scholar 

  10. Fina I, Quintana A, Padilla-Pantoja J, Marti X, Macià F, Sanchez F, Foerster M, Aballe L, Fontcuberta J, Sort J (2017) ACS Appl Mater Interfaces 9(18):15577–15582

    Article  Google Scholar 

  11. Wayne R (1968) Phys Rev 170:523

    Article  ADS  Google Scholar 

  12. Kamenev K, Arnold Z, Kamarád J, Baranov NV (1997) J Alloys Compd 252:1

    Article  Google Scholar 

  13. Stern-Taulats E, Planes A, Lloveras P, Barrio M, Tamarit J-L, Pramanick S, Majumdar S, Frontera C, Mañosa L (2014) Phys Rev B 89:214105

    Article  ADS  Google Scholar 

  14. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O (2012) Nat Mater 11:620

    Article  ADS  Google Scholar 

  15. Liu Y, Phillips LC, Mattana R, Bibes M, Barthélémy A, Dkhil B (2016) Nat Commun 7:11614

    Article  ADS  Google Scholar 

  16. Marti X, Fina I, Frontera C, Liu J, Wadley P, He Q, Paull RJ, Clarkson JD, Kudrnovský J, Turek I, Kuneš J, Yi D, Chu J-H, Nelson CT, You L, Arenholz E, Salahuddin S, Fontcuberta J, Jungwirth T, Ramesh R (2014) Nat Mater 13:367

    Article  ADS  Google Scholar 

  17. Moriyama T, Matsuzaki N, Kim K-J, Suzuki I, Taniyama T, Ono T (2015) Appl Phys Lett 107:122403

    Article  ADS  Google Scholar 

  18. Barua R, Jiang X, Jimenez-Villacorta F, Shield JE, Heiman D, Lewis LH (2013) J Appl Phys 113:23910

    Article  Google Scholar 

  19. Kaeswurm B, Jimenez-Villacorta F, Bennett SP, Heiman D, Lewis LH (2014) J Magn Magn Mater 354:284

    Article  ADS  Google Scholar 

  20. Ayoub JP, Gatel C, Roucau C, Casanove MJ (2011) J Cryst Growth 314:336

    Article  ADS  Google Scholar 

  21. Loving M, Jimenez-Villacorta F, Kaeswurm B, Arena DA, Marrows CH, Lewis LH (2013) J Phys D Appl Phys 46:162002

    Article  ADS  Google Scholar 

  22. Dupuis V, Robert A, Hillion A, Khadra G, Blanc N, Le Roy D, Tournus F, Albin C, Boisron O, Tamion A (2016) Beilstein J Nanotechnol 7:1850

    Article  Google Scholar 

  23. Ko HYY, Suzuki T, Phuoc NN, Cao J (2008) J Appl Phys 103:07D508

    Article  Google Scholar 

  24. Kauffmann-Weiss S, Gruner ME, Backen A, Schultz L, Entel P, Fähler S (2011) Phys Rev Lett 107:206105

    Article  ADS  Google Scholar 

  25. Witte R, Kruk R, Gruner ME, Brand RA, Wang D, Schlabach S, Beck A, Provenzano V, Pentcheva R, Wende H, Hahn H (2016) Phys Rev B 93:104416

    Article  ADS  Google Scholar 

  26. Witte R, Kruk R, Molinari A, Wang D, Schlabach S, Brand RA, Provenzano V, Hahn H (2017) J Phys D Appl Phys 50:25007

    Article  Google Scholar 

  27. Staunton JB, Banerjee R, Dias M d S, Deak A, Szunyogh L (2014) Phys Rev B 89(54427)

    Google Scholar 

  28. Kudrnovský J, Drchal V, Turek I (2015) Phys Rev B 91:14435

    Article  ADS  Google Scholar 

  29. Witte R (2016) Strain Adaption in Epitaxial Fe-Rh Nanostructures, Dissertation, Technische Universität Darmstadt

    Google Scholar 

  30. Thiele J-U, Maat S, Fullerton EE (2003) Appl Phys Lett 82:2859

    Article  ADS  Google Scholar 

  31. Jia Z, Misra RDK (2011) Mater Technol 26:200

    Article  Google Scholar 

  32. Lounis L, Spezzani C, Delaunay R, Fortuna F, Obstbaum M, Günther S, Back CH, Popescu H, Vidal F, Sacchi M (2016) J Phys D Appl Phys 49:205003

    Article  ADS  Google Scholar 

  33. Orna J, Morellón L, Algarabel PA, De Teresa JM, Fernández-Pacheco A, Simón G, Magen C, Pardo JA, Ibarra MR (2010) Adv Sci Technol 67:82

    Article  Google Scholar 

  34. Gütlich P, Bill E, Trautwein AX (2011) Mössbauer spectroscopy and transition metal chemistry. Springer Berlin Heidelberg, Berlin

    Book  Google Scholar 

  35. Bordel C, Juraszek J, Cooke DW, Baldasseroni C, Mankovsky S, Minár J, Ebert H, Moyerman S, Fullerton EE, Hellman F (2012) Phys Rev Lett 109:117201

    Article  ADS  Google Scholar 

  36. Barua R, McDonald I, Jiménez-Villacorta F, Heiman D, Lewis LH (2016) J Alloys Compd 689:1044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Witte, R., Kruk, R., Wang, D., Brand, R.A., Hahn, H. (2020). Antiferromagnetic-to-Ferromagnetic Transition in FeRh Thin Films with Strain Induced Nanostructure. In: Sidorenko, A., Hahn, H. (eds) Functional Nanostructures and Sensors for CBRN Defence and Environmental Safety and Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1909-2_7

Download citation

Publish with us

Policies and ethics