Skip to main content

Challenges on the Production and Characterization of B-Doped Single Walled Carbon Nanotubes

  • Conference paper
  • First Online:
Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security (NMWAD 2017)

Abstract

This chapter is mainly devoted to give a fundamental insight on the concepts behind the wall modification, doping, and general formation of single-walled nanotubes that involve the presence of boron as heteroatoms within the nanotube structure. Research on carbon nanotubes has matured in various fields reaching real possibilities for applications. However, in structures like substitutionally doped nanotubes, the full application potential can only be reached if bonding environments, doping levels and overall morphology can somewhat be controlled. This is not the case for boron doped single-walled carbon nanotubes and it will be taken as example of discussion throughout the following sections. The bulk and local characterization tools employed with these materials are here discussed regarding their suitability and limitations. Furthermore, focusing on applications, the theoretical approaches confirming the physical and chemical properties are objectively analyzed versus the materials available at this moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayala P, Arenal R, Loiseau A, Rubio A, Pichler T (2010) The physical and chemical properties of heteronanotubes. Rev Mod Phys 82:1843

    ADS  Google Scholar 

  2. Andreas H (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853

    Google Scholar 

  3. Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T (2010) The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48(3):575

    Google Scholar 

  4. Klumpp C, Kostarelos K, Prato M, Bianco A (2006) Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochimica et Biophysica Acta (BBA) – Biomembranes 1758(3):404. Mechanisms of carrier-mediated intracellular delivery of therapeutics

    Google Scholar 

  5. Jorio A, Dresselhaus M, Dresselhaus G (2008) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Heidelberg

    MATH  Google Scholar 

  6. Ayala P, Grueneis A, Gemming T, Buechner B, Ruemmeli MH, Grimm D, Schumann J, Kaltofen R, Freire FL Jr, Fonseca Filho HD, Pichler T (2007) Influence of the catalyst hydrogen pretreatment on the growth of vertically aligned nitrogen-doped carbon nanotubes. Chem Mater 19(25):6131

    Google Scholar 

  7. Ayala P, Grüneis A, Gemming T, Grimm D, Kramberger C, Rümmeli M, Freire FL Jr, Kuzmany H, Pfeiffer R, Barreiro A, Büchner B, Pichler T (2007) Tailoring n-doped single and double wall carbon nanotubes from a non-diluted carbon/nitrogen feedstock. J Phys Chem C 101:2879

    Google Scholar 

  8. Ayala P, Grüneis A, Kramberger C, Rümmeli M, Freire F Jr, Solórzano IG, Pichler T (2007) Effects of the reaction atmposphere compositon on the synthesis of single and multiwall nitrogen doped nanotubes. J Chem Phys 127:184709

    ADS  Google Scholar 

  9. Han W (2006) Silicon doped boron carbide nanorod growth via a solid-liquid-solid process. Appl Phys Lett 88(13)

    ADS  Google Scholar 

  10. Ruiz-Soria G, Susi T, Sauer M, Yanagi K, Pichler T, Ayala P (2015) On the bonding environment of phosphorus in purified doped single-walled carbon nanotubes. Carbon 81:91

    Google Scholar 

  11. Ruiz-Soria G, Ayala P, Puchegger S, Kataura H, Yanagi K, Pichler T (2011) On the purification of cvd grown boron doped single-walled carbon nanotubes. Phys Stat Sol B 248(11):2504

    ADS  Google Scholar 

  12. Chegel R (2016) Tuning electronic properties of carbon nanotubes by boron and nitrogen doping. Physica B 499:1

    ADS  Google Scholar 

  13. Hai-Yang S, Xin-Wei Z (2009) The effects of boron doping and boron grafts on the mechanical properties of single-walled carbon nanotubes. J Phys D 42(22)

    Google Scholar 

  14. Fakhrabadi MMS, Allahverdizadeh A, Norouzifard V, Dadashzadeh B (2012) Effects of boron doping on mechanical properties and thermal conductivities of carbon nanotubes. Solid State Commun 152(21):1973

    ADS  Google Scholar 

  15. Li YF, Wang Y, Chen SM, Wang HF, Kaneko T, Hatakeyama R (2013) Electrical transport properties of boron-doped single-walled carbon nanotubes. J Appl Phys 113(5)

    ADS  Google Scholar 

  16. Anand B, Podila R, Ayala P, Oliveira L, Philip R, Sai SSS, Zakhidov AA, Rao AM (2013) Nonlinear optical properties of boron doped single-walled carbon nanotubes. Nanoscale 5(16):7271

    ADS  Google Scholar 

  17. Pichler T, Borowiak-Palen E, Fuentes G, Knupfer M, Graff A, Fink J, Wirtz L, Rubio A (2003) Electronic structure and optical properties of boron doped single-wall arbon nanotubes. Mol Nanostruct 685(4):361

    ADS  Google Scholar 

  18. Krstic V, Blumentritt S, Muster J, Roth S, Rubio A (2003) Role of disorder on transport in boron-doped multiwalled carbon nanotubes. Phys Rev B 67(4)

    Google Scholar 

  19. Wei B, Spolenak R, Kohler-Redlich P, Ruhle M, Arzt E (1999) Electrical transport in pure and boron-doped carbon nanotubes. Appl Phys Lett 74(21):3149

    ADS  Google Scholar 

  20. Jalili S, Akhavan M, Schofield J (2012) Electronic and structural properties of bc3 nanotubes with defects. J Phys Chem C 116:13225

    Google Scholar 

  21. Cardona M, Yu P (2010) Fundamentals of semiconductors: physics and materials properties. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  22. Liu X, Pichler T, Knupfer M, Fink J, Kataura H (2004) Electronic properties of fecl3-intercalated single-wall carbon nanotubes. Phys Rev B 70(20):205405

    ADS  Google Scholar 

  23. Lee RS, Kim HJ, Fischer JE, Thess A, Smalley RE (1997) Conductivity enhancement in single-walled carbon nanotube bundles doped with k and br. Nature 388(6639):255

    ADS  Google Scholar 

  24. Guerini S, Souza AG, Mendes J, Alves OL, Fagan SB (2005) Electronic properties of fecl3-adsorbed single-wall carbon nanotubes. Phys Rev B 72(23)

    Google Scholar 

  25. Yi JY, Bernholc J (1993) Atomic structure and doping of microtubules. Phys Rev B 47(3):1708

    ADS  Google Scholar 

  26. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 56:354

    Google Scholar 

  27. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603

    ADS  Google Scholar 

  28. Serin V, Brydson R, Scott A, Kihn Y, Abidate O, Maquin B, Derre A (2000) Evidence for the solubility of boron in graphite by electron energy loss spectroscopy. Carbon 38(4):547

    Google Scholar 

  29. Terrones M, Jorio A, Endo M, Rao A, Kim Y, Hayashi T, Terrones H, Charlier JC, Dresselhaus G, Dresselhaus M (2004) New direction in nanotube science. Materialstoday, p 30

    Google Scholar 

  30. Borowiak-Palen E, Pichler T, Fuentes G, Graff A, Kalenczuk R, Knupfer M, Fink J (2004) Synthesis and electronic properties of b-doped single wall carbon nanotubes. Carbon 42:1123

    Google Scholar 

  31. Borowiak-Palen E, Pichler T, Fuentes G, Graff A, Kalenczuk R, Knupfer M, Fink J (2003) Efficient production of b-substituted single-wall carbon nanotubes. Chem Phys Lett 378(5–6):516

    ADS  Google Scholar 

  32. Golberg D, Bando Y, Burgeois L, Kurashima K, Sato T (2000) Large-scale synthesis and hrtem analysis of single-walled b- and n-doped carbon nanotube bundles. Carbon 38:2017

    Google Scholar 

  33. Fuentes G, Borowiak-Palen E, Knupfer M, Pichler T, Fink J, Wirtz L, Rubio A (2004) Formation and electronic properties of bc3single-wall nanotubes upon boron substitution of carbon nanotubes. Phys Rev B 69(24):245403

    ADS  Google Scholar 

  34. Miyamoto Y, Rubio A, Louie SG, Cohen ML (1994) Electronic properties of tubule forms of hexagonal bc3. Phys Rev B 50(24):18360

    ADS  Google Scholar 

  35. Miyamoto Y, Rubio A, Cohen ML, Louie SG (1994) Chiral tubules of hexagonal bc2n. Phys Rev B 50:4976

    ADS  Google Scholar 

  36. Liu AY, Wentzcovitch RM, Cohen ML (1989) Atomic arrangement and electronic structure of bc2n. Phys Rev B 39(3):1760

    ADS  Google Scholar 

  37. Carroll D, Redlich P, Blase X, Charlier J, Curran S, Ajayan P, Roth S, Ruhle M (1998) Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys Rev Lett 81(11):2332

    ADS  Google Scholar 

  38. Wirtz L, Rubio A (2003) Band structure of boron doped carbon nanotubes. Mol Nanostruct 685(4):402

    ADS  Google Scholar 

  39. Rümmeli MH, Ayala P, Pichler T (2010) Carbon nanotubes and related structures: production and formation, chap. 1. Cambridge University Press, UK, pp 1–21

    Google Scholar 

  40. Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of co on bimetallic co-mo catalysts. Chem Phys Lett 317(3–5):497

    ADS  Google Scholar 

  41. Bachilo S, Balzano L, Herrera J, Pompeo F, Resasco D, Weisman R (2003) Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalystblase. J Am Chem Soc 125:11186

    Google Scholar 

  42. Tanaka T, Jin H, Miyata Y, Fujii S, Suga H, Naitoh Y, Minari T, Miyadera T, Tsukagoshi K, Kataura H (2009) Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett 9(4):1497

    ADS  Google Scholar 

  43. Yanagi K, Iitsuka T, Fujii S, Kataura H (2008) Separations of metallic and semiconducting carbon nanotubes by using sucrose as a gradient medium. J Phys Chem C 112(48):18889

    Google Scholar 

  44. Arnold M, Green A, Hulvat J, Stupp S, Hersam M (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60

    ADS  Google Scholar 

  45. Stephan O, Ajayan P, Colliex C, Redlich P, Lambert J, Bernier P, Lefin P (1994) Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266:1863

    Google Scholar 

  46. Ewels C, Glerup M (2005) Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol 5(9):1345

    Google Scholar 

  47. Golberg D, Bando Y, Tang C, Zhi C (2007) Boron nitride nanotubes. Adv Mat 19(18):2413

    Google Scholar 

  48. Weng-Sieh Z, Cherrey K, Chopra NG, Blase X, Miyamoto Y, Rubio A, Cohen ML, Louie SG, Zettl A, Gronsky R (1995) Synthesis of bxcynz nanotubules. Phys Rev B 51:11229

    ADS  Google Scholar 

  49. Redlich P, Loeffler J, Ajayan P, Bill J, Aldinger F, Ruhle M (1996) B-c-n nanotubes and boron doping of carbon nanotubes. Chem Phys Lett 260(3–4):465

    ADS  Google Scholar 

  50. Maultzsch J, Reich S, Thomsen C, Webster S, Czerw R, Carroll D, Vieira S, Birkett P, Rego C (2002) Raman characterization of boron-doped multiwalled carbon nanotubes. Appl Phys Lett 81(14):2647

    ADS  Google Scholar 

  51. Carroll D, Redlich P, Ajayan P, Curran S, Roth S, Ruhle M (1998) Spatial variations in the electronic structure of pure and b-doped nanotubes. Carbon 36(5):753

    Google Scholar 

  52. Babanejad SA, Malekfar R, Ashrafi F, Hosseini SMRS (2010) Production and study of boron and nitrogen-doped carbon nanotubes by arc discharge method using dispersive raman back-scattering spectroscopy. Asian J Chem 22(1):245

    Google Scholar 

  53. Wang B, Ma Y, Wu Y, Li N, Huang Y, Chen Y (2009) Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties. Carbon 47(8):2112

    Google Scholar 

  54. Deng C, Chen J, Chen X, Mao C, Nie L, Yao S (2008) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 23(8):1272

    Google Scholar 

  55. Han W, Bando Y, Kurashima K, Sato T (1999) Boron-doped carbon nanotubes prepared through a substitution reaction. Chem Phys Lett 299(5):368

    ADS  Google Scholar 

  56. Chiang WH, Chen GL, Hsieh CY, Lo SC (2015) Controllable boron doping of carbon nanotubes with tunable dopant functionalities: an effective strategy toward carbon materials with enhanced electrical properties. RSC Adv 5(118):97579

    Google Scholar 

  57. Golberg D, Bando Y, Kurashima K, Sato T (2001) Synthesis, hrtem and electron diffraction studies of b/n-doped c and bn nanotubes. Diamond Relat Mater 10(1):63

    ADS  Google Scholar 

  58. Chen C, Tsai C, Lin C (2003) The characterization of boron-doped carbon nanotube arrays. Diamond Relat Mater 12(9):1500

    ADS  Google Scholar 

  59. Koos AA, Dillon F, Obraztsova EA, Crossley A, Grobert N (2010) Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes. Carbon 48(11):3033

    Google Scholar 

  60. Panchakarla LS, Govindaraj A, Rao CNR (2010) Boron- and nitrogen-doped carbon nanotubes and graphene. Inorg Chim Acta 363(15):4163

    Google Scholar 

  61. Lyu SC, Han JH, Shin KW, Sok JH (2011) Synthesis of boron-doped double-walled carbon nanotubes by the catalytic decomposition of tetrahydrofuran and triisopropyl borate. Carbon 49(5):1532

    Google Scholar 

  62. Cao Y, Yu H, Tan J, Peng F, Wang H, Li J, Zheng W, Wong NB (2013) Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon 57:433

    Google Scholar 

  63. Keru G, Ndungu PG, Nyamori VO (2015) Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes. Mater Chem Phys 153:323

    Google Scholar 

  64. Daothong S, Parjanne J, Kauppinen EI, Valkeapää M, Pichler T, Singjai P, Ayala P (2009) Study of the role of fe based catalysts on the growth of b-doped swcnts synthesized by cvd. Phys Status Solidi B 246(11–12):2518

    ADS  Google Scholar 

  65. Ayala P, Plank W, Grüneis A, Kauppinen E, Rümmeli MH, Kuzmany H, Pichler T (2008) A one step approach to b-doped single-walled carbon nanotubes. J Mater Chem 18:5676

    Google Scholar 

  66. Ayala P, Ruemmeli MH, Gemming T, Kauppinen E, Kuzmany H, Pichler T (2008) Cvd growth of single-walled b-doped carbon nanotubes. Phys Stat Sol B 245(10, Sp. Iss. SI):1935

    ADS  Google Scholar 

  67. Monteiro FH, Larrude DG, Maia da Costa MEH, Freire FL (2013) Estimating the boron doping level on single wall carbon nanotubes using raman spectroscopy. Mater Lett 92:224

    Google Scholar 

  68. Monteiro FH, Larrude DG, Maia da Costa MEH, Terrazos LA, Capaz RB, Freire FL Jr (2012) Production and characterization of boron-doped single wall carbon nanotubes. J Phys Chem C 116(5):3281

    Google Scholar 

  69. Ruiz-Soria G, Daothong S, Pichler T, Ayala P (2012) Spectroscopic study of the diameter distribution of b-doped single-walled carbon nanotubes. Phys Status Solidi B 249(12):2469

    ADS  Google Scholar 

  70. Gai P, Stephan O, McGuire K, Rao A, Dresselhaus M, Dresselhaus G, Colliex C (2004) Structural systematics in boron-doped single wall carbon nanotubes. J Mater Chem 14(4):669

    Google Scholar 

  71. McGuire K, Gothard N, Gai P, Dresselhaus M, Sumanasekera G, Rao A (2005) Synthesis and raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43:219

    Google Scholar 

  72. Blackburn JL, Yan Y, Engtrakul C, Parilla PA, Jones K, Gennett T, Dillon AC, Heben MJ (2006) Synthesis and characterization of boron-doped single-wall carbon nanotubes produced by the laser vaporization technique. Chem Mater 18(10):2558

    Google Scholar 

  73. Ayala P, Reppert J, Grobosch M, Knupfer M, Pichler T, Rao AM (2010) Evidence for substitutional boron in doped single-walled carbon nanotubes. Appl Phys Lett 96(18)

    ADS  Google Scholar 

  74. Glerup M, Steinmetz J, Samaille D, Stephan O, Enouz S, Loiseau A, Roth S, Bernier P (2004) Synthesis of n-doped swnt using the arc-discharge procedure. Chem Phys Lett 387(1–3):193

    ADS  Google Scholar 

  75. Droppa R Jr, Hammer P, Carvalho A, Alvarez F (2002) Incorporation of nitrogen in carbon nanotubes. J Non-Cryst Solids 874:299

    Google Scholar 

  76. Han W, Bando Y, Kurashima K, Sato T (1998) Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl Phys Lett 73(21):3085

    ADS  Google Scholar 

  77. Golberg D, Bando Y, Han W, Kurashima K, Sato T (1999) Single-walled b-doped carbon, b/n-doped carbon and bn nanotubes synthesized from single-walled carbon nanotubes through a substitution eaction. Chem Phys Lett 308(3–4):337

    ADS  Google Scholar 

  78. Bystrzejewski M, Bachmatiuk A, Thomas J, Ayala P, Serwatowski J, Huebers HW, Gemming T, Borowiak-Palen E, Pichler T, Kalenczuk RJ, Buechner B, Ruemmeli MH (2009) Boron doped carbon nanotubes via ceramic catalysts. Phys Stat Sol RRL 3(6):193

    Google Scholar 

  79. Arenal R, Stephan O, Cochon JL, Loiseau A (2007) Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. J Am Chem Soc 129(51):16183

    Google Scholar 

  80. Hassanien A, Tokumoto M, Shimizu T, Tokumoto H (2004) Stm on suspended single wall carbon nanotubes. Thin Solid Films 464:338. 7th international symposium on atomically controlled surfaces, interfaces and nanostructures, Nara, 16–20 Nov 2003

    Google Scholar 

  81. Orlikowski D, Nardelli M, Bernholc J, Roland C (2000) Theoretical stm signatures and transport properties of native defects in carbon nanotubes. Phys Rev B 61(20):14194

    ADS  Google Scholar 

  82. Ichimura K, Osawa M, Nomura K, Kataura H, Maniwa Y, Suziki S, Achiba Y (2002) Tunneling spectroscopy on carbon nanotubes using stm. Physica B 323(1–4):230 Tsukuba symposium on carbon nanotube in commemoration of the 10th anniversary of its discovery, Tsukuba, 03–05 Oct 2001

    Google Scholar 

  83. Odom T, Huang J, Lieber C (2002) Stm studies of single-walled carbon nanotubes. J Phys-Condens Matter 14(6):R145

    Google Scholar 

  84. Kim P, Odom T, Huang J, Lieber C (2000) Stm study of single-walled carbon nanotubes. Carbon 38(11–12):1741

    Google Scholar 

  85. Biro L, Gyulai J, Lambin P, Nagy J, Lazarescu S, Mark G, Fonseca A, Surjan P, Szekeres Z, Thiry P, Lucas A (1998) Scanning tunnelling microscopy (stm) imaging of carbon nanotubes. Carbon 36(5–6):689. Symposium A on fullerenes and carbon based materials, at the European-Materials-Research-Society 1997 meeting, Strasbourg, 16–20 June 1997

    Google Scholar 

  86. Tans SJ, Dekker C (2000) Molecular transistors: potential modulations along carbon nanotubes. Nature 404:834

    ADS  Google Scholar 

  87. Rubio A (1999) Spectroscopic properties and stm images of carbon nanotubes. Appl Phys A 68(3):275

    ADS  Google Scholar 

  88. Lambin P, Mark G, Meunier V, Biro L (2003) Computation of stm images of carbon nanotubes. Int J Quantum Chem 95(4–5):493. 43rd international symposium on theory and computations in molecular and materials sciences, biology, and pharmacology, St Augustine, 22 Feb–01 Mar 2003

    Google Scholar 

  89. Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS (2001) Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys Rev Lett 86(6):1118

    ADS  Google Scholar 

  90. Caudal N, Saitta AM, Lazzeri M, Mauri F (2007) Kohn anomalies and nonadiabaticity in doped carbon nanotubes. Phys Rev B 75:115423

    ADS  Google Scholar 

  91. Maciel I, Anderson N, Pimenta M, Hartschuh A, Quian H, Terrones M, Terrones H, Campos-Delgado J, Rao A, Novotny L, Jorio A (2008) Electron and phonon renormalization near charged defects in carbon nanotubes. Nat Mater 7:878

    ADS  Google Scholar 

  92. Fink J (1989) Recent development in energy-loss spectroscopy. Adv Electron Electron Phys 75:121

    Google Scholar 

  93. Jacobsohn L, Schulze R, da Costa MM, Nastasi M (2004) X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering. Surf Sci 572:418

    ADS  Google Scholar 

  94. Panchakarla LS, Govindaraj A, Rao CNR (2007) Nitrogen- and boron-doped double-walled carbon nanotubes. ACS Nano 1(5):494

    Google Scholar 

  95. Kramberger C, Rauf H, Shiozawa H, Knupfer M, Büchner B, Pichler T (2007) Unraveling van hove singularities in the x-ray absorption response of single wall carbon nanotubes. Phys Rev B 75:235437

    ADS  Google Scholar 

  96. Charlier JC, Blase X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79(2):677

    ADS  Google Scholar 

  97. Xu Z, Lu W, Wang W, Gu C, Liu K, Bai X, Wang E, Dai H (2008) Converting metallic single-walled carbon nanotnbes into semiconductors by boron/nitrogen co-doping. Adv Mat 20(19):3615+

    Google Scholar 

  98. Latil S, Roche S, Mayou D, Charlier J (2004) Mesoscopic transport in chemically doped carbon nanotubes. Phys Rev Lett 92(25)

    Google Scholar 

  99. Das A, Sood AK, Govindaraj A, Saitta AM, Lazzeri M, Mauri F, Rao CNR (2007) Doping in carbon nanotubes probed by raman and transport measurements. Phys Rev Lett 99

    Google Scholar 

  100. Murata N, Haruyama J, Reppert J, Rao AM, Koretsune T, Saito S, Matsudaira M, Yagi Y (2008) Superconductivity in thin films of boron-doped carbon nanotubes. Phys Rev Lett 101(2):027002

    ADS  Google Scholar 

  101. Cheng Y, Tian Y, Fan X, Liu J, Yan C (2014) Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reactionin in alkaline media. Electrochim Acta 143:291

    Google Scholar 

  102. Chen X, Chen J, Deng C, Xiao C, Yang Y, Nie Z, Yao S (2008) Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode. Talanta 76(4):763

    Google Scholar 

  103. Haruyama J, Matsudaira M, Reppert J, Rao A, Koretsune T, Saito S, Sano H, Iye Y (2011) Superconductivity in boron-doped carbon nanotubes. J Supercond Novel Magn 24(1–2):111

    Google Scholar 

  104. Owens FJ (2007) Boron and nitrogen doped single walled carbon nanotubes as possible dilute magnetic semiconductors. Nanoscale Res Lett 2(9):447

    ADS  MathSciNet  Google Scholar 

  105. Zhou Z, Gao X, Yan J, Song D, Morinaga M (2004) Enhanced lithium absorption in single-walled carbon nanotubes by boron doping. J Phys Chem B 108(26):9023

    Google Scholar 

  106. Liu XM, Romero HE, Gutierrez HR, Adu K, Eklund PC (2008) Transparent boron-doped carbon nanotube films. Nano Lett 8(9):2613

    ADS  Google Scholar 

  107. Reinoso C, Berkmann C, Shi L, Debut A, Yanagi K, Pichler T, Ayala P (2019) Toward a predominant Substitutional bonding environment in B-doped single-walled carbon nanotubes. ACS Omega 4(1):1941

    Google Scholar 

  108. Reinoso C, Shi L, Domanov 0 RP, Pichler T, Ayala P (2018) Very high borondoping on single-w ed carbon nanotubes from a solid precursor. Carbon 140:259–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ayala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayala, P. (2019). Challenges on the Production and Characterization of B-Doped Single Walled Carbon Nanotubes. In: Bittencourt, C., Ewels, C., Llobet, E. (eds) Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security. NMWAD 2017. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1620-6_8

Download citation

Publish with us

Policies and ethics