Skip to main content

Synthesis of Tridimensional Ensembles of Carbon Nanotubes

  • Conference paper
  • First Online:
Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security (NMWAD 2017)

Abstract

The topic of this chapter is the synthesis of both aligned and unaligned carbon nanotube bulk ensembles by different methods such as electric arc discharge, laser ablation and chemical vapor deposition methods. First, general requirements for the CNTs synthesis are introduced. Utilization of different types of nucleation centers for nanotube synthesis as well as the role of CNT growth promoters and inhibitors is reviewed. Particular attention is paid to CVD methods which are most easily scalable, they offer a relatively good control over synthesis conditions and a high quality of as produced CNTs. Two general approaches for formation of catalyst for the CVD nanotube synthesis are discussed, namely methods utilizing pre-deposited catalysts or their precursors and methods exploiting an injection of catalyst precursors during the nanotube synthesis. Examples of breakthrough synthesis approaches, fundamental studies and those with best known results are given. The different nanotube fabrication methodologies are reviewed and discussed in details. This may assist readers to select the proper method and synthesis conditions with regards to nanotube targeted application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    ADS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    ADS  Google Scholar 

  3. Bethune DS, Kiang CH, de Vries MS, Gorman G, Savoy R, Vazquez J et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    ADS  Google Scholar 

  4. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243:49–54

    ADS  Google Scholar 

  5. Laplaze D, Bernier P, Maser WK, Flamant G, Guillard T, Loiseau A (1998) Carbon nanotubes: the solar approach. Carbon 36:685–688

    Google Scholar 

  6. Kim KS, Cota-Sanchez G, Kingston CT, Imris M, Simard B, Soucy G (2007) Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J Phys D Appl Phys 40:2375–2387

    ADS  Google Scholar 

  7. Tian Y, Zhang Y, Wang B, Ji W, Zhang Y, Xie K (2004) Coal-derived carbon nanotubes by thermal plasma jet. Carbon 42:2597–2601

    Google Scholar 

  8. Moothi K, Iyuke SE, Meyyappan M, Falcon R (2012) Coal as a carbon source for carbon nanotube synthesis. Carbon 50:2679–2690

    Google Scholar 

  9. Mishra N, Das G, Ansaldo A, Genovese A, Malerba M, Povia M et al (2012) Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. J Anal Appl Pyrolysis 94:91–98

    Google Scholar 

  10. Bazargan A, McKay G (2012) A review – synthesis of carbon nanotubes from plastic wastes. Chem Eng J 195-196:377–391

    Google Scholar 

  11. Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349

    ADS  Google Scholar 

  12. Dai HJ, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (Sep 27 1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475

    ADS  Google Scholar 

  13. Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN et al (2013) The infinite possible growth Ambients that support Single-Wall carbon nanotube Forest growth. Sci Rep 3:3334

    ADS  Google Scholar 

  14. Hahn J, Han JH, Yoo J-E, Jung HY, Suh JS (2004) New continuous gas-phase synthesis of high purity carbon nanotubes by a thermal plasma jet. Carbon 42:877–883

    Google Scholar 

  15. Qin LC, Zhou D, Krauss AR, Gruen DM (1998) Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl Phys Lett 72:3437

    ADS  Google Scholar 

  16. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP et al (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–1107

    ADS  Google Scholar 

  17. Kato T, Hatakeyama R (2010) Growth of single-walled carbon nanotubes by plasma CVD. J Nanotechnol 2010:1–11

    Google Scholar 

  18. Lim SH, Luo Z, Shen Z, Lin J (2010) Plasma-assisted synthesis of carbon nanotubes. Nanoscale Res Lett 5:1377–1386

    ADS  Google Scholar 

  19. Harutyunyan AR (2009) The catalyst for growing single-walled carbon nanotubes by catalytic chemical vapor deposition method. J Nanosci Nanotechnol 9:2480–2495

    Google Scholar 

  20. Sun HD, Tang ZK, Li G (1999) Synthesis and Raman characterization of mono-sized single-wall carbon nanotubes in one-dimensional channels of AlPO4-5 crystals. Appl Phys A Mater Sci Process 69:381–384

    ADS  Google Scholar 

  21. Yao Y, Feng C, Zhang J, Liu Z (2009) Cloning of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett 9:1673–1677

    ADS  Google Scholar 

  22. Liu J, Wang C, Tu X, Liu B, Chen L, Zheng M et al (2012) Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy. Mol Ther 3:1199

    Google Scholar 

  23. Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K (2013) Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat Chem 5(7):572–576

    Google Scholar 

  24. Ding F, Rosén A, Bolton K (2004) The role of the catalytic particle temperature gradient for SWNT growth from small particles. Chem Phys Lett 393:309–313

    ADS  Google Scholar 

  25. Hofmann S, Sharma R, Ducati C, Du G, Mattevi C, Cepek C et al (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7:602–608

    ADS  Google Scholar 

  26. Yoshida H, Takeda S, Uchiyama T, Kohno H, Homma Y (2008) Atomic-scale in-situ observation of carbon nanotube growth from solid state Iron carbide nanoparticles. Nano Lett 8:2082–2086

    ADS  Google Scholar 

  27. Fiawoo MFC, Bonnot AM, Amara H, Bichara C, Thibault-Pénisson J, Loiseau A (2012) Evidence of correlation between catalyst particles and the single-wall carbon nanotube diameter: a first step towards chirality control. Phys Rev Lett 108

    Google Scholar 

  28. Amara H, Bichara C (Jun 2017) Modeling the growth of single-wall carbon nanotubes. Top Curr Chem (J) 375:55

    Google Scholar 

  29. He M, Magnin Y, Amara H, Jiang H, Cui H, Fossard F et al (2017) Linking growth mode to lengths of single-walled carbon nanotubes. Carbon 113:231–236

    Google Scholar 

  30. Jourdain V, Bichara C (2013) Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 58:2–39

    Google Scholar 

  31. Tan L-L, Ong W-J, Chai S-P, Mohamed AR (2013) Growth of carbon nanotubes over non-metallic based catalysts: a review on the recent developments. Catal Today 217:1–12

    Google Scholar 

  32. Robertson J, Hofmann S, Cantoro M, Parvez A, Ducati C, Zhong G et al (2008) Controlling the catalyst during carbon nanotube growth. J Nanosci Nanotechnol 8:6105–6111

    Google Scholar 

  33. Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52:2083–2089

    ADS  Google Scholar 

  34. Ismagilov RR, Shvets PV, Zolotukhin AA, Obraztsov AN (2013) Growth of a carbon nanotube Forest on silicon using remote plasma CVD. Chem Vap Depos 19:332–337

    Google Scholar 

  35. Bandow S, Takizawa M, Hirahara K, Yudasaka M, Iijima S (2001) Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem Phys Lett 337:48–54

    ADS  Google Scholar 

  36. Simon F, Kuzmany H (2006) Growth of single wall carbon nanotubes from 13C isotope labelled organic solvents inside single wall carbon nanotube hosts. Chem Phys Lett 425:85–88

    ADS  Google Scholar 

  37. de los Arcos T, Gunnar Garnier M, Oelhafen P, Mathys D, Won Seo J, Domingo C et al (2004) Strong influence of buffer layer type on carbon nanotube characteristics. Carbon 42:187–190

    Google Scholar 

  38. Amama PB, Putnam SA, Barron AR, Maruyama B (2013) Wetting behavior and activity of catalyst supports in carbon nanotube carpet growth. Nanoscale 5:2642–2646

    ADS  Google Scholar 

  39. Forrest GA, Alexander AJ (2008) Quantitative inhibiting effect of Group I–III cations on the growth of carbon nanotubes. Carbon 46:818–821

    Google Scholar 

  40. Kiang C-H (2000) Growth of large-diameter single-walled carbon nanotubes. J Phys Chem A 104:2454–2456

    Google Scholar 

  41. Haluška M, Skakalova V, Carroll D, Roth S (2005) The influence of sulfur promoter on the production of SWCNTs by the arc-discharge process. AIP Conf Proc 786:87–91

    ADS  Google Scholar 

  42. Haluška M, Hulman M, Hornbostel B, Čech J, Skákalová V, Roth S (2006) Synthesis of SWCNTs for C82 peapods by arc-discharge process using nonmagnetic catalysts. Phys Status Solidi (b) 243:3042–3045

    ADS  Google Scholar 

  43. Huang L, Wu B, Chen J, Xue Y, Liu Y, Kajiura H et al (2011) Synthesis of single-walled carbon nanotubes by an arc-discharge method using selenium as a promoter. Carbon 49:4792–4800

    Google Scholar 

  44. Li YL, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304:276–278

    ADS  Google Scholar 

  45. Motta MS, Moisala A, Kinloch IA, Windle AH (2008) The role of Sulphur in the synthesis of carbon nanotubes by chemical vapour deposition at high temperatures. J Nanosci Nanotechnol 8:2442–2449

    Google Scholar 

  46. Jung Y, Song J, Huh W, Cho D, Jeong Y (2013) Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis. Chem Eng J 228:1050–1056

    Google Scholar 

  47. Futaba D, Hata K, Yamada T, Mizuno K, Yumura M, Iijima S (2005) Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys Rev Lett 95

    Google Scholar 

  48. Xie K, Muhler M, Xia W (2013) Influence of water on the initial growth rate of carbon nanotubes from ethylene over a cobalt-based catalyst. Ind Eng Chem Res 52:14081–14088

    Google Scholar 

  49. Zhang R, Zhang Y, Zhang Q, Xie H, Qian W, Wei F (2013) Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACSnano 7:6156–6161

    Google Scholar 

  50. Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT et al (2009) Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett 9:44–49

    ADS  Google Scholar 

  51. Kim SM, Pint CL, Amama PB, Zakharov DN, Hauge RH, Maruyama B et al (2010) Evolution in catalyst morphology leads to carbon nanotube growth termination. J Phys Chem Lett 1:918–922

    Google Scholar 

  52. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    ADS  Google Scholar 

  53. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222

    ADS  Google Scholar 

  54. Farhat S, Hinkov I, Scott CD (2004) Arc process parameters for single-walled carbon nanotube growth and production: experiments and modeling. J Nanosci Nanotechnol 4:377–389

    Google Scholar 

  55. Kim HH, Kim HJ (2006) Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere. Mater Sci Eng B 133:241–244

    Google Scholar 

  56. Lange H, Huczko A, Sioda M, Louchev O (2003) Carbon arc plasma as a source of nanotubes: emission spectroscopy and formation mechanism. J Nanosci Nanotechnol 3:51–62

    Google Scholar 

  57. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY et al (1996) Large-scale synthesis of aligned carbon nanotubes. Science 274:1701–1703

    ADS  Google Scholar 

  58. Gangele A, Sharma CS, Pandey AK (2017) Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: a review. J Nanosci Nanotechnol 17:2256–2273

    Google Scholar 

  59. Hofmann S, Ducati C, Kleinsorge B, Robertson J (2003) Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl Phys Lett 83:4661–4663

    ADS  Google Scholar 

  60. Fan S (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514

    ADS  Google Scholar 

  61. Zhong G, Warner JH, Fouquet M, Robertson AW, Chen B, Robertson J (2012) Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACSnano 6:2893–2903

    Google Scholar 

  62. Jiang K, Li Q, Fan S (2002) Spinning continuous carbon nanotube yarns. Nature 419:801

    ADS  Google Scholar 

  63. Zhang X, Jiang K, Feng C, Liu P, Zhang L, Kong J et al (2006) Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv Mater 18:1505–1510

    Google Scholar 

  64. Zhang M, Atkinson KR, Baughman RH (2004) Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 306:1358–1361

    ADS  Google Scholar 

  65. Cui Y, Wang B, Zhang M (2013) Optimizing reaction condition for synthesizing spinnable carbon nanotube arrays by chemical vapor deposition. J Mater Sci 48:7749–7756

    ADS  Google Scholar 

  66. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364

    ADS  Google Scholar 

  67. Yasuda S, Arakawa K, Futaba DN, Yumura M, Yamada T, Satou J et al (2009) Improved and large area single-walled carbon nanotube Forest growth by controlling the gas flow direction. ACSnano 3:4164–4170

    Google Scholar 

  68. Sakurai S, Inaguma M, Futaba DN, Yumura M, Hata K (2013) Diameter and density control of single-walled carbon nanotube forests by modulating Ostwald ripening through decoupling the catalyst formation and growth processes. Small

    Google Scholar 

  69. Krause M, Haluška M, Abrasonis G, Gemming S (2012) SWCNT growth from C:Ni nanocomposites. Phys Status Solidi (b) 249:2357–2360

    ADS  Google Scholar 

  70. Melkhanova S, Haluska M, Hubner R, Kunze T, Keller A, Abrasonis G et al (2016) Carbon : nickel nanocomposite templates - predefined stable catalysts for diameter-controlled growth of single-walled carbon nanotubes. Nanoscale 8:14888–14897

    ADS  Google Scholar 

  71. Chikkadi K, Mattmann M, Muoth M, Durrer L, Hierold C (2011) The role of pH in the density control of ferritin-based catalyst nanoparticles towards scalable single-walled carbon nanotube growth. Microelectron Eng 88:2478–2480

    Google Scholar 

  72. van de Burgt Y (2014) Laser-assisted growth of carbon nanotubes—a review. J Laser Appl 26:032001–032001

    Google Scholar 

  73. Haluška M, Bellouard Y, Dietzel A (2008) Time dependent growth of vertically aligned carbon nanotube forest using a laser activated catalytical CVD method. Phys Status Solidi (b) 245:1927–1930

    ADS  Google Scholar 

  74. Haluska M, Bellouard Y, van de Burgt Y, Dietzel A (2010) In situ monitoring of single-wall carbon nanotube laser assisted growth. Nanotechnology 21:75602

    Google Scholar 

  75. Xu M, Futaba DN, Yumura M, Hata K (2012) Alignment control of carbon nanotube Forest from random to nearly perfectly aligned by utilizing the crowding Effec. ACSnano 6:5837–5844

    Google Scholar 

  76. Shanov V, Cho W, Malik R, Alvarez N, Haase M, Ruff B et al (2013) CVD growth, characterization and applications of carbon nanostructured materials. Surf Coat Technol 230:77–86

    Google Scholar 

  77. Sugime H, Esconjauregui S, D'Arsie L, Yang J, Robertson AW, Oliver RA et al (Aug 05 2015) Low-temperature growth of carbon nanotube forests consisting of tubes with narrow inner spacing using co/Al/Mo catalyst on conductive supports. ACS Appl Mater Interfaces 7:16819–16827

    Google Scholar 

  78. Youn SK, Frouzakis CE, Gopi BP, Robertson J, Teo KBK, Park HG (2013) Temperature gradient chemical vapor deposition of vertically aligned carbon nanotubes. Carbon 54:343–352

    Google Scholar 

  79. Foroughi J, Spinks GM, Wallace GG, Oh J, Kozlov ME, Fang S et al (2011) Torsional carbon nanotube artificial muscles. Science 334:494–497

    ADS  Google Scholar 

  80. Kobashi K, Hirabayashi T, Ata S, Yamada T, Futaba DN, Hata K (2013) Green, scalable, binderless fabrication of a single-walled carbon nanotube nonwoven fabric based on an ancient Japanese paper process. ACS Appl Mater Interfaces 5:12602–12608

    Google Scholar 

  81. Sen R, Govindaraj A, Rao CNR (1997) Carbon nanotubes by the metallocene route. Chem Phys Lett 267:276–280

    ADS  Google Scholar 

  82. Zhang ZJ, Wei BQ, Ramanath G, Ajayan PM (2000) Substrate-site selective growth of aligned carbon nanotubes. Appl Phys Lett 77:3764

    ADS  Google Scholar 

  83. Pham QN, Larkin LS, Lisboa CC, Saltonstall CB, Qiu L, Schuler JD et al (2017) Effect of growth temperature on the synthesis of carbon nanotube arrays and amorphous carbon for thermal applications. Phys Status Solidi (a) 214:1600852

    ADS  Google Scholar 

  84. Szymanski L, Kolacinski Z, Wiak S, Raniszewski G, Pietrzak L (2017) Synthesis of carbon nanotubes in thermal plasma reactor at atmospheric pressure. Nanomaterials (Basel) 7(2):45

    Google Scholar 

  85. Sundaram RM, Koziol KK, Windle AH (2011) Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv Mater 23:5064–5068

    Google Scholar 

  86. Seraphin S, Zhou D (1994) Single-walled carbon nanotubes produced at high yield by mixed catalysts. Appl Phys Lett 64:2087

    ADS  Google Scholar 

  87. Lambert JM, Ajayan PM, Bernier P, Planeix JM, Brotons V, Coq B et al (1994) Improving conditions towards isolating single-shell carbon nanotubes. Chem Phys Lett 226:364–371

    ADS  Google Scholar 

  88. Huczko A, Lange H, Bystrzejewski M, Baranowski P, Ando Y, Zhao X et al (2006) Effect of graphitization of Fe-doped anode and optical Emision studies. J Nanosci Nanotechnol 6:1319–1324

    Google Scholar 

  89. Li J, Kundrapu M, Shashurin A, Keidar M (2012) Emission spectra analysis of arc plasma for synthesis of carbon nanostructures in various magnetic conditions. J Appl Phys 112:024329

    ADS  Google Scholar 

  90. Journet W, Maser K, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758

    ADS  Google Scholar 

  91. Saito Y, Tani Y, Miyagawa N, Mitsushima K, Kasuya A, Nishina Y (1998) High yield of single-wall carbon nanotubes by arc discharge using Rh–Pt mixed catalysts. Chem Phys Lett 294:593–598

    ADS  Google Scholar 

  92. Itkis ME, Perea DE, Niyogi S, Rickard SM, Hamon MA, Hu H et al (2003) Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett 3:309–314

    ADS  Google Scholar 

  93. Itkis ME, Perea DE, Niyogi S, Love J, Tang J, Yu A et al (2004) Optimization of the Ni-Y catalyst composition in bulk electric arc synthesis of single-walled carbon nanotubes by use of near-infrared spectroscopy. J Phys Chem B 108:12770–12775

    Google Scholar 

  94. Hinkov I, Grand J, Lamy De La Chapelle M, Farhat S, Scott CD, Nikolaev P et al (2004) Effect of temperature on carbon nanotube diameter and bundle arrangement: microscopic and macroscopic analysis. J Appl Phys 95:2029–2037

    ADS  Google Scholar 

  95. Farhat S, Lamy De La Chapelle M, Loiseau A, Scott CD, Lefrant S, Journet C et al (2001) Diameter control of single-walled carbon nanotubes using argon–helium mixture gases. J Chem Phys 115:6752

    ADS  Google Scholar 

  96. Saito Y, Tani Y, Kasuya A (2000) Diameters of single-wall carbon nanotubes depending on helium gas pressure in an arc discharge. J Phys Chem B 104:2495–2499

    Google Scholar 

  97. Waldorff EI, Waas AM, Friedmann PP, Keidar M (2004) Characterization of carbon nanotubes produced by arc discharge: effect of the background pressure. J Appl Phys 95:2749–2754

    ADS  Google Scholar 

  98. Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov K (2008) Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge. Appl Phys Lett 92:043129

    ADS  Google Scholar 

  99. Keidar M, Levchenko I, Arbel T, Alexander M, Waas AM, Ostrikov KK (2008) Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge. J Appl Phys 103:094318

    ADS  Google Scholar 

  100. Su Y, Zhang Y, Wei H, Qian B, Yang Z, Zhang Y (2012) Length-controlled synthesis of single-walled carbon nanotubes by arc discharge with variable cathode diameters. Physica E 44:1548–1551

    ADS  Google Scholar 

  101. Takizawa M, Bandow S, Torii T, Iijima S (1999) Effect of environment temperature for synthesizing single-wall carbon nanotubes by arc vaporization method. Chem Phys Lett 302:146–150

    ADS  Google Scholar 

  102. Roch A, Jost O, Schultrich B, Beyer E (2007) High-yield synthesis of single-walled carbon nanotubes with a pulsed arc-discharge technique. Phys Status Solidi (b) 244:3907–3910

    ADS  Google Scholar 

  103. Ishigami M, Cumings J, Zettl A, Chen S (2000) A simple method for the continuous production of carbon nanotubes. Chem Phys Lett 319:457–459

    ADS  Google Scholar 

  104. Antisari MV, Marazzi R, Krsmanovic R (2003) Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments. Carbon 41:2393–2401

    Google Scholar 

  105. Ryzhkov VA (2002) Carbon nanotube production by a cracking of liquid hydrocarbons. Phys B Condens Matter 323:324–326

    ADS  Google Scholar 

  106. Zhao X, Kadoya T, Ikeda T, Suzuki T, Inoue S, Ohkohchi M et al (2007) Development of Fe-doped carbon electrode for mass-producing high-yield single-wall carbon nanotubes. Diam Relat Mater 16:1101–1105

    ADS  Google Scholar 

  107. Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    ADS  Google Scholar 

  108. Hornbostel B, Haluska M, Cech J, Dettlaff U, Roth S (2006) Arc discharge and laser ablation synthesis of single-walled carbon nanotubes. NATO Science Series II 2:1–19

    Google Scholar 

  109. Bandow S, Asaka S, Saito Y, Rao AM, Grigorian L, Richter E et al (1998) Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. 80:3779–3782

    Google Scholar 

  110. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    ADS  Google Scholar 

  111. Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodrıguez-Macıas FJ et al (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A Mater Sci Process 67:29–37

    ADS  Google Scholar 

  112. Kingston CT, Jakubek ZJ, Dénommée S, Simard B (2004) Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon 42:1657–1664

    Google Scholar 

  113. Jost O, Gorbunov A, Liu X, Pompe W, Fink J (2004) Single-walled carbon nanotube diameter. J Nanosci Nanotechnol 4:433–440

    Google Scholar 

  114. Ruemmeli MH, Kramberger C, Loeffler M, Jost O, Bystrzejewski M, Grueneis A et al (2007) Catalyst volume to surface area constraints for nucleating carbon nanotubes. J Phys Chem B 111:8234–8241

    Google Scholar 

  115. Maser WK, Munoz E, Benito AM, Martınez MT, de la Fuente GF, Maniette Y et al (1998) Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett 292:587–593

    ADS  Google Scholar 

  116. Maser WK, Benito AM, Munoz E, de Val GM, Martınez MT, Larrea A et al (2001) Production of carbon nanotubes by CO2-laser evaporation of various carbonaceous feedstock materials. Nanotechnology 12:147–151

    ADS  Google Scholar 

  117. Braidy N, El Khakani MA, Botton GA (2002) Single-wall carbon nanotubes synthesis by means of UV laser vaporization. Chem Phys Lett 354:88–92

    ADS  Google Scholar 

  118. Kusaba M, Tsunawaki Y (2006) Production of single-wall carbon nanotubes by a XeCl excimer laser ablation. Thin Solid Films 506-507:255–258

    ADS  Google Scholar 

  119. Kusaba M, Tsunawaki Y (2007) Raman spectroscopy of SWNTs produced by a XeCl excimer laser ablation at high temperatures. Appl Surf Sci 253:6330–6333

    ADS  Google Scholar 

  120. Arepalli S, Scott CD (1999) Spectral measurements in production of single-wall carbon nanotubes by laser ablation. Chem Phys Lett 302:139–145

    ADS  Google Scholar 

  121. Kokai F, Takahashi K, Yudasaka M, Iijima S (2000) Laser ablation of graphite-co/Ni and growth of Single-Wall carbon nanotubes in vortexes formed in an Ar atmosphere. J Phys Chem B 104:6777–6784

    Google Scholar 

  122. Puretzky AA, Geohegan DB, Fan X, Pennycook SJ (2000) In situ imaging and spectroscopy of single-wall carbon nanotube synthesis by laser vaporization. Appl Phys Lett 76:182

    ADS  Google Scholar 

  123. Puretzky A, Schittenhelm H, Fan X, Lance M, Allard L, Geohegan D (2002) Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys Rev B 65

    Google Scholar 

  124. Geohegan DB, Puretzky AA, Styers-Barnett D, Hu H, Zhao B, Cui H et al (2007) In situ time-resolved measurements of carbon nanotube and nanohorn growth. Phys Status Solidi (b) 244:3944–3949

    ADS  Google Scholar 

  125. Puretzky AA, Styers-Barnett DJ, Rouleau CM, Hu H, Zhao B, Ivanov IN et al (2008) Cumulative and continuous laser vaporization synthesis of single wall carbon nanotubes and nanohorns. Applied Physics A 93:849–855

    Google Scholar 

  126. Cochon JL, Gavillet J, de la Chapelle ML, Loiseau A, Ory M, Pigache D (1999) A continuous wave CO2 laser reactor for nanotubes synthesis. In: Kuzmany H, Fink J, Mehring M, Roth S (eds.), AIP conference proceedings, electronic properties of novel materials– Science and technology of molecular nanostructures, vol. 486, pp. 237–240,

    Google Scholar 

  127. Dorval N, Foutel-Richard A, Cau M, Loiseau A, Attal-Trétout B, Cochon JL et al (2004) In-Situ optical analysis of the gas phase during the formation of carbon nanotubes. J Nanosci Nanotechnol 4:450–462

    Google Scholar 

  128. Cau M, Dorval N, Attal-Trétout B, Cochon JL, Foutel-Richard A, Loiseau A et al (2010) Formation of carbon nanotubes: in situ optical analysis using laser-induced incandescence and laser-induced fluorescence. Phys Rev B 81:165416

    ADS  Google Scholar 

  129. Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) Synthesis of graphite fibers and filaments. In: Graphite fibers and filaments, springer series in materials science, vol 5. Springer, Berlin/Heidelberg, pp 12–34

    Google Scholar 

  130. Satishkumar BC, Govindaraj A, Sen R, Rao CNR (1998) Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures. Chem Phys Lett 293:47–52

    ADS  Google Scholar 

  131. Bladh K, Falk LKL, Rohmund F (2000) Onthe iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Appl Phys A Mater Sci Process 70:317–322

    ADS  Google Scholar 

  132. Ci L, Wei B, Liang J, Xu C, Wu D (1999) Preparation of carbon nanotubules by the foating catalyst method. J Mater Sci Lett 18:797–799

    Google Scholar 

  133. Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA et al (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313:91–97

    ADS  Google Scholar 

  134. Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A: Vac Surf Films 19:–1800

    ADS  Google Scholar 

  135. Nikolaev P (2004) Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the HiPco process. J Nanosci Nanotechnol 4:307–316

    Google Scholar 

  136. Saito T, Ohshima S, Okazaki T, Ohmori S, Yumura M, Iijima S (2008) Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J Nanosci Nanotechnol 8:6153–6157

    Google Scholar 

  137. Nasibulin AG, Moisala A, Brown DP, Jiang H, Kauppinen EI (2005) A novel aerosol method for single walled carbon nanotube synthesis. Chem Phys Lett 402:227–232

    ADS  Google Scholar 

  138. Nasibulin AG, Shandakov SD, Timmermans MY, Kauppinen EI (2011) Aerosol synthesis and applications of single-walled carbon nanotubes. Russ Chem Rev 80:771–786

    ADS  Google Scholar 

  139. Chiang W-H, Sankaran RM (2009) Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles. Nat Mater 8:882–886

    ADS  Google Scholar 

  140. Chiang W-H, Sakr M, Gao XPA, Sankaran RM (2012) Nanoengineering NixFe1-x catalysts for gas-phase, selective synthesis of semiconducting single-walled carbon nanotubes. ACSnano 3:4023–4032

    Google Scholar 

  141. Mikhalchan A, Fan Z, Tran TQ, Liu P, Tan VBC, Tay T-E et al (2016) Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon 102:409–418

    Google Scholar 

  142. Tavoulareas ES (1991) Fluidized-bed combustion technology. Annu Rev Energy Environ 16:25–57

    Google Scholar 

  143. Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Lucay AA (1996) Fe-catalyzed carbon nanotube formation. Carbon 34:1249–1257

    Google Scholar 

  144. Venegoni D, Serp P, Feurer R, Kihn Y, Vahlas C, Kalck P (2002) Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40:1799–1807

    Google Scholar 

  145. Li Y-L, Kinloch IA, Shaffer MSP, Geng J, Johnson B, Windle AH (2004) Synthesis of single-walled carbon nanotubes by a fluidized-bed method. Chem Phys Lett 384:98–102

    ADS  Google Scholar 

  146. Yun S, Qian W, Cui C, Yu Y, Zheng C, Liu Y et al (2013) Highly selective synthesis of single-walled carbon nanotubes from methane in a coupled downer-turbulent fluidized-bed reactor. J Energy Chem 22:567–572

    Google Scholar 

  147. MacKenzie KJ, Dunens OM, Harris AT (2010) An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Ind Eng Chem Res 49:5323–5338

    Google Scholar 

  148. Dasgupta K, Joshi JB, Banerjee S (2011) Fluidized bed synthesis of carbon nanotubes – a review. Chem Eng J 171:841–869

    Google Scholar 

  149. Kim KS, Seo JH, Nam JS, Ju WT, Hong SH (2005) Production of hydrogen and carbon black by methane decomposition using DC-RF hybrid thermal plasmas. IEEE Trans Plasma Sci 33:813–823

    ADS  Google Scholar 

  150. Shahverdi A, Kim KS, Alinejad Y, Soucy G (2012) In situ purity enhancement/surface modification of single-walled carbon nanotubes synthesized by induction thermal plasma. J Nanopart Res 14

    Google Scholar 

Download references

Acknowledgement

I would like to thank for help, support, fruitful discussions and cooperation to all my colleagues and students from S. Roth group at FKF MPI Stuttgart, D. Carroll group at WFU-Winston-Salem, A. Dietzel group at TU Eindhoven, and Ch. Hierold group at ETH Zurich, who joined my excitement from CNT synthesis and characterization. The valuable suggestions to manuscript from Viera Skakalova, Valentin Döring, Kiran Chikkadi, Matthias Muoth, Christina Wouters, and Stuart Truax are acknowledged. The support from ETH-FIRST and BRNC (Binnig and Rohrer Nanotechnology Center, Ruschlikon/Zurich) operation teams is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miro Haluska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haluska, M. (2019). Synthesis of Tridimensional Ensembles of Carbon Nanotubes. In: Bittencourt, C., Ewels, C., Llobet, E. (eds) Nanoscale Materials for Warfare Agent Detection: Nanoscience for Security. NMWAD 2017. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1620-6_7

Download citation

Publish with us

Policies and ethics