Skip to main content

Polymer Nanocomposites with Silver Nanoparticles Formed by Low-Energy Ion Implantation: Slow Positron Beam Spectroscopy Studies

  • Conference paper
  • First Online:

Abstract

Polymer nanocomposites formed by low-energy ion implantation were studied by means of positron annihilation spectroscopy with a variable-energy positron beam or slow positron beam spectroscopy. Silver ion implantation into polymethylmethacrylate (Ag:PMMA) and hybrid organic-inorganic ureasil (Ag:ureasil) was performed at different ion fluences with a constant energy of 30 keV and a current density of 1 μA/cm2 in order to prepare Ag nanoparticles in the near-surface region of polymer matrix. Contribution of Doppler broadening slow positron beam spectroscopy technique for understanding Ag nanoparticles formation in Ag:PMMA and Ag:ureasil nanocomposite films is demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stepanov AL (2010) Synthesis of silver nanoparticles in dielectric matrix by ion implantation: a review. Rev Adv Mater Sci 26:1

    Google Scholar 

  2. Wang J et al (2012) Photoluminescence and reflectivity of polymethylmethacrylate implanted by low-energy carbon ions at high fluences. Appl Surf Sci 261:653

    Article  ADS  Google Scholar 

  3. Gupta R et al (2012) Optical characterization of poly(methyl methacrylate) implanted with low energy ions. Appl Surf Sci 263:334

    Article  ADS  Google Scholar 

  4. Stepanov AL (2004) Optical properties of metal nanoparticles synthesized in a polymer by ion implantation: a review. Tech Phys 49:143

    Article  Google Scholar 

  5. Galyautdinov MF et al (2016) Formation of a periodic diffractive structure based on poly(methyl methacrylate) with ion-implanted silver nanoparticles. Tech Phys Lett 42:182

    Article  ADS  Google Scholar 

  6. Lee EH et al (1992) Improved hardness and wear properties of B-ion implanted polycarbonate. J Mater Res 7:1900

    Article  ADS  Google Scholar 

  7. Lee EH et al (1993) Ion beam application for improved polymer surface properties. Nucl Instrum Meth Phys Res B 74:326

    Article  ADS  Google Scholar 

  8. Klepikov V, Kruchinin S, Novikov V, Sothikov A (2006) Composite materials with radioactive inclusions as artificial radiation covering. Rev Adv Mater Sci 12:127

    Google Scholar 

  9. Kruchinin S, Novikov V, Klepikov V (2008) Nonlinear current oscillations in a Josephson junction with fractal radioisotope composites. Metrol Meas Syst 15:281

    Google Scholar 

  10. Ermakov V, Kruchinin S, Fujiwara A (2008) In: Bonca J, Kruchinin S (eds) Proceeding of NATO ARW “Electron Transport in Nanosystems”. Springer, pp 341–349

    Google Scholar 

  11. Boldyryeva H et al (2004) Surface modification and nanoparticle formation by negative ion implantation of polymers. Nucl Instr Meth Phys Res B 219–220:953

    Article  ADS  Google Scholar 

  12. Boldyryeva H et al (2005) High-fluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Surf Coat Technol 196:373

    Article  Google Scholar 

  13. Kavetskyy T S et al (2014) Structural defects and positronium formation in 40 keV B+-implanted polymethylmethacrylate. J Phys Chem B 118:4194

    Article  Google Scholar 

  14. Kavetskyy TS, Stepanov AL (2016) Ion-irradiation-induced carbon nanostructures in optoelectronic polymer materials. In: Monteiro WA (ed) Radiation effects in materials. InTech, Rijeka, pp 287–308

    Google Scholar 

  15. Kavetskyy T et al (2017) High-dose boron and silver ion implantation into PMMA probed by slow positrons: effects of carbonization and formation of metal nanoparticles. J Phys Conf Ser 791:012028

    Article  Google Scholar 

  16. Panzarasa G et al (2016) Positron annihilation spectroscopy: a new frontier for understanding nanoparticle-loaded polymer brushes. Nanotechnology 27:02LT03

    Google Scholar 

  17. Panzarasa G et al (2017) Probing the impact of the initiator layer on grafted-from polymer brushes: a positron annihilation spectroscopy study. Macromolecules 50:5574

    Article  ADS  Google Scholar 

  18. Stepanov AL et al (2000) Formation of metal-polymer composites by ion implantation. Phil Mag B 80:23

    Article  ADS  Google Scholar 

  19. Stepanov AL et al (2015) Synthesis of porous silicon by ion implantation. Rev Adv Mater Sci 40:155

    Google Scholar 

  20. Kavetskyy T et al (2011) Nanovoids in glasses and polymers probed by positron annihilation lifetime spectroscopy. In: Riethmaier JP et al (eds) Nanotechnological basis for advanced sensors. Springer, Berlin, pp 103–110

    Chapter  Google Scholar 

  21. Kavetskyy T et al (2012) New organic-inorganic hybrid ureasil-based polymer and glass-polymer composites with ion-implanted silver nanoparticles. Phys Status Solidi C 9:2444

    Article  ADS  Google Scholar 

  22. Kavetskyy T et al (2013) New organic-inorganic hybrid ureasil-based polymer materials studied by PALS and SEM techniques. Mater Sci Forum 733:171

    Article  Google Scholar 

  23. Anwand W et al (1995) A magnetically guided slow positron beam for defect studies. Acta Phys Pol A 88:7

    Article  Google Scholar 

  24. Anwand W et al (2012) Design and construction of a slow positron beam for solid and surface investigations. Defect Diffus Forum 331:25

    Article  Google Scholar 

  25. Makhov AF (1961) The penetration of electrons into solids. II. The distribution of electrons in depth. Sov Phys Solid State 2:1942

    Google Scholar 

  26. Vehanen A et al (1987) Profiling multilayer structures with monoenergetic positrons. Phys Rev B 35:4606

    Article  ADS  Google Scholar 

  27. Kobayashi Y et al (2008) Application of positron beams to the study of positronium-forming solids. Appl Surf Sci 255:174

    Article  ADS  Google Scholar 

  28. Kavetskyy T et al (2017) Acta Phys Pol A Network properties of ureasil-based polymer matrixes for construction of amperometric biosensors as probed by PALS and swelling experiments. 132:1515

    Google Scholar 

  29. Saito F et al (2004) Study of ion irradiated poly-lactic acid using slow positron beam. Mater Sci Forum 445–446:340

    Article  Google Scholar 

  30. Saito F et al (2014) Characterization of ion-irradiated poly-L-lactic acid using nano-cutting. Phys Chem Chem Phys 16:26991

    Article  Google Scholar 

  31. Kavetskyy TS et al (2018) Surface plasmon resonance band of ion-synthesized Ag nanoparticles in high dose Ag: PMMA nanocomposite films. In: Petkov P et al (eds) Advanced nanotechnologies for detection and defence against CBRN agents, Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1298-7_5

    Google Scholar 

  32. Hanemann T, Szabo DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468

    Article  ADS  Google Scholar 

  33. Wie S et al (2011) Multifunctional composite core-shell nanoparticles. Nanoscale 3:4474

    Article  ADS  Google Scholar 

  34. Kumar KS et al (2013) Recent advancement in functional core-shell nanoparticles of polymers: synthesis, physical properties, and applications in medical biotechnology. J Nanoparticles 2013:672059

    Article  Google Scholar 

  35. Gillet JN, Meunier M (2005) General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy. J Phys Chem B 109:8733

    Article  Google Scholar 

  36. Puska MJ, Lanki P, Nieminen RM (1989) Positron affinities for elemental metals. J Phys Condens Matter 1:6081

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by the Ministry of Education and Science of Ukraine (projects #0116U004737 and #0117U007143; to TK), by the Slovak Grant Agency VEGA (project #2/0157/17; to OŠ), and Slovak Research and Development Agency (project #APVV-16-0369; to OŠ), by the National Science Fund of the Bulgarian Ministry of Education (project #FNI-DN09/12-2016; to TK, TP and VB) and by the Russian Foundation for Basic Research (project #15-48-02525; to ALS).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kavetskyy, T.S. et al. (2018). Polymer Nanocomposites with Silver Nanoparticles Formed by Low-Energy Ion Implantation: Slow Positron Beam Spectroscopy Studies. In: Bonča, J., Kruchinin, S. (eds) Nanostructured Materials for the Detection of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1304-5_21

Download citation

Publish with us

Policies and ethics