Skip to main content

Humidity Sensing Properties of Tungsten Based Glass Crystalline Materials in the WO3-ZnO-La2O3-Al2O3 System

  • Conference paper
  • First Online:
Advanced Nanotechnologies for Detection and Defence against CBRN Agents

Abstract

Glass crystalline materials from the WO3-ZnO-La2O3-Al2O3 system containing high WO3 concentrations (60–76 mol%) were prepared by controlling the glass crystallization and were then employed as humidity based sensors. According toX-ray analysis, WO3 separates as a crystalline phase from the amorphous structures with the nominal compositions 76WO3·9.5ZnO·9.5La2O3·5Al2O3 and 60WO3·7.5ZnO·7.5La2O3·25Al2O3 after the heat treatment. Samples were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) for elemental analysis. Using the screen printing technique, the synthesized crystalline glass samples were deposited onto interdigidated Pt electrodes; then the sensors were tested in the range from 0.0% to 96% relative humidity (RH) at room temperature. It was observed that the increase in the content of WO3 leads to improve sensor sensitivity towards RH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou X, Zhang J, Jiang T, Wang X, Zhu Z (2007) Sensors Actuators A 135:209

    Article  Google Scholar 

  2. Chou KS, Lee TK, Liu FJ (1999) Sensors Actuators B Chem 56:106

    Article  Google Scholar 

  3. Patil DY, Seo YK, Hwang YK (2008) Sensors Actuators B Chem 128:374

    Article  Google Scholar 

  4. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Adv Funct Mater 21:2175

    Article  Google Scholar 

  5. Potje-Kamloth K (2008) Chem Rev 108:367

    Article  Google Scholar 

  6. Kamali Heidari E, Marzbanrad E, Zamani C, Raissi B (2009) Nanoscale Res Lett 5:370

    Article  ADS  Google Scholar 

  7. Leng J, XU X, Lv N, Fan H, Zhang T (2011) J Colloid Interface Sci 54:356

    Google Scholar 

  8. Liu B, Cai D, Liu Y, Wang D, Wang L, Wang Y (2014) Sensors Actuators B Chem 28:193

    Google Scholar 

  9. Ponzoni A, Comini E, Ferroni M, Sberveglieri G (2005) Thin Solid Films 81:490

    Google Scholar 

  10. Sriyudthsak M, Supothina S (2006) Sensors Actuators B Chem 113:265

    Article  Google Scholar 

  11. Siriwong C, Wetchakun K, Wisitsoraat A, Phanichphant S (2009) IEEE Sens Conf 1:118

    Google Scholar 

  12. Kim SJ, Cho PS, Lee JH, Kang CY, Kim JS, Yoon SJ (2008) Ceram Int 34:827

    Article  Google Scholar 

  13. Ong HC, Lei DY, Li J, Xu JB (2010) In: Geddes CD (ed) Metal-enhanced fluorescence. Wiley, New York, p 393

    Chapter  Google Scholar 

  14. Hahm J (2010) In: Geddes CD (ed) Metal-enhanced fluorescence. Wiley, New York, p 363

    Chapter  Google Scholar 

  15. Kanan SM, El-Kadri OM, Abu-Yousef IA, Kanan MC (2009) Sensors 9:5158

    Article  Google Scholar 

  16. Cheng XI, Zhao H, Huo LK, Gao S, Zhao JG (2004) Sensors Actuators B Chem 102:248

    Article  ADS  Google Scholar 

  17. Nunes P, Fortunato E, Lopes A, Martins R (2001) J Int Inorg Mater 3:1129

    Article  Google Scholar 

  18. Pal E, Hornok V, Kun R, Oszko A, Seemann T, Dékany I, Busse M (2012) J Colloid Interface Sci 100:378

    Google Scholar 

  19. Ataalla M, Milanova M, Hassan M, Afify AS, Tulliani JM, Dimitriev Y (2015) Nano-science advances in CBRN agents detection, information and energy security, NATO science for peace and security series A: chemistry and biology, 451

    Google Scholar 

  20. Ataalla M, Milanova M, Hassan M, Tulliani JM, Dimitriev Y, Iliev C (2014) J Nanosci Nanotechnol 14:126

    Article  Google Scholar 

  21. Tulliani J-M, Bonville P (2005) Ceram Int 31:507

    Article  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge Professor Jean Marc Tulliani from department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy, for working in his laboratory facilities for gas sensors testing and for fruitful discussions and Dr. Amr Mohamed, Chemistry Department, Taibah University, Saudi Arabia, for his valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media B.V., part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ataalla, M., Afify, A.S., Hassan, M., Adam, A.M., Milanova, M., Piroeva, I. (2018). Humidity Sensing Properties of Tungsten Based Glass Crystalline Materials in the WO3-ZnO-La2O3-Al2O3 System. In: Petkov, P., Tsiulyanu, D., Popov, C., Kulisch, W. (eds) Advanced Nanotechnologies for Detection and Defence against CBRN Agents. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1298-7_41

Download citation

Publish with us

Policies and ethics