Skip to main content

Finite Element Analysis (FEA) Technology

  • Chapter
  • First Online:
Digital Orthopedics
  • 591 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jones AC, Wilcox RK. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med Eng Phys. 2008;30:1287–304.

    Article  Google Scholar 

  2. Board D, Stemper BD, Yoganandan N, et al. Biomechanics of the aging spine. Biomed Sci Instrum. 2006;42:1–6.

    PubMed  Google Scholar 

  3. Kallemeyn N, Gandhi A, Kode S, et al. Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data. Med Eng Phys. 2010;32:482–9.

    Article  Google Scholar 

  4. Laville A, Laporte S, Skalli W. Parametric and subject-specific finite element modelling of the lower cervical spine. Influence of geometrical parameters on the motion patterns. J Biomech. 2009;42:1409–15.

    Article  CAS  Google Scholar 

  5. Harrigan TP, Kareh JA, O’Connor DO, et al. A finite element study of the initiation of failure of fixation in cemented femoral total hip components. J Orthop Res. 1992;10:134–44.

    Google Scholar 

  6. McNamara BP, Cristofolini L, Toni A, et al. Relationship between bone-prosthesis bonding and load transfer in total hip reconstruction. J Biomech. 1997;30:621–30.

    Article  CAS  Google Scholar 

  7. Vichnin HH, Batterman SC. Stress analysis and failure prediction in the proximal femur before and after total hip replacement. J Biomech Eng. 1986;108:33–41.

    Article  CAS  Google Scholar 

  8. Scifert CF, Brown TD, Lipman JD. Finite element analysis of a novel design approach to resisting total hip dislocation. Clin Biomech (Bristol, Avon). 1999;14:697–703.

    Article  CAS  Google Scholar 

  9. Messick KJ, Miller MA, Damron LA, et al. Vacuum-mixing cement does not decrease overall porosity in cemented femoral stems: an in vitro laboratory investigation. J Bone Joint Surg Br. 2007;89:1115–21.

    Article  CAS  Google Scholar 

  10. Harrigan TP, Harris WH. A finite element study of the effect of diametral interface gaps on the contact areas and pressures in uncemented cylindrical femoral total hip components. J Biomech. 1991;24:87–91.

    Article  CAS  Google Scholar 

  11. Panjabi MM, Ito S, Ivancic PC, et al. Evaluation of the intervertebral neck injury criterion using simulated rear impacts. J Biomech. 2005;38:1694–701.

    Article  Google Scholar 

  12. Yoganandan N, Kumaresan SC, Voo L, et al. Finite element modeling of the C4-C6 cervical spine unit. Med Eng Phys. 1996;18:569–74.

    Article  CAS  Google Scholar 

  13. Yoganandan N, Myklebust JB, Ray G, et al. Mathematical and finite element analysis of spine injuries. Crit Rev Biomed Eng. 1987;15:29–93.

    CAS  PubMed  Google Scholar 

  14. Yoganandan N, Kumaresan S, Voo L, et al. Finite element applications in human cervical spine modeling. Spine. 1996;21:1824–34.

    Article  CAS  Google Scholar 

  15. Natarajan RN, Williams JR, Andersson GB. Recent advances in analytical modeling of lumbar disc degeneration. Spine. 2004;29:2733–41.

    Article  Google Scholar 

  16. Zhang QH, Teo EC. Finite element application in implant research for treatment of lumbar degenerative disc disease. Med Eng Phys. 2008;30:1246–56.

    Article  Google Scholar 

  17. Natarajan RN, Williams JR, Lavender SA, et al. Relationship between disc injury and manual lifting: a poroelastic finite element model study. Proc Inst Mech Eng H. 2008;222:195–207.

    Article  CAS  Google Scholar 

  18. Lu S, Xu YQ, Zhang MC, et al. Biomechanical effect of vertebroplasty on the adjacent intervertebral levels using a three-dimensional finite element analysis. Chin J Traumatol. 2007;10:120–4.

    PubMed  Google Scholar 

  19. Little JP, Adam CJ, Evans JH, et al. Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc. J Biomech. 2007;40:2744–51.

    Article  CAS  Google Scholar 

  20. Teo EC, Zhang QH, Huang RC. Finite element analysis of head-neck kinematics during motor vehicle accidents: analysis in multiple planes. Med Eng Phys. 2007;29:54–60.

    Article  Google Scholar 

  21. Lee KK, Teo EC, Fuss FK, et al. Finite-element analysis for lumbar interbody fusion under axial loading. IEEE Trans Biomed Eng. 2004;51:393–400.

    Article  CAS  Google Scholar 

  22. Chiang MF, Zhong ZC, Chen CS, et al. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis. Spine. 2006;31:E682–9.

    Article  Google Scholar 

  23. Goel VK, Grauer JN, Patel T, et al. Effects of charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine. 2005;30:2755–64.

    Article  Google Scholar 

  24. Noailly J, Lacroix D, Planell JA. Finite element study of a novel intervertebral disc substitute. Spine. 2005;30:2257–64.

    Article  Google Scholar 

  25. Liu XS, Sajda P, Saha PK, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. 2008;23:223–35.

    Article  Google Scholar 

  26. Langrana NA, Harten RR, Lin DC, et al. Acute thoracolumbar burst fractures: a new view of loading mechanisms. Spine. 2002;27:498–508.

    Article  CAS  Google Scholar 

  27. Teo EC, Ng HW. First cervical vertebra (atlas) fracture mechanism studies using finite element method. J Biomech. 2001;34:13–21.

    Article  CAS  Google Scholar 

  28. Ng HW, Teo EC. Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading. J Spinal Disord. 2001;14:201–10.

    Article  CAS  Google Scholar 

  29. Zhang QH, Tan SH, Teo EC. A numerical study of the effect of axial acceleration on the responses of the cervical spine during low-speed rear-end impact. Proc Inst Mech Eng H. 2008;222:1167–74.

    Article  Google Scholar 

  30. Pearson AM, Panjabi MM, Ivancic PC, et al. Frontal impact causes ligamentous cervical spine injury. Spine. 2005;30:1852–8.

    Article  Google Scholar 

  31. Panjabi MM, Ivancic PC, Maak TG, Tominaga Y, Rubin W. Multiplanar cervical spine injury due to head-turned rear impact. Spine. 2006;31:420–9.

    Article  Google Scholar 

  32. Tropiano P, Thollon L, Arnoux PJ, et al. Using a finite element model to evaluate human injuries application to the HUMOS model in whiplash situation. Spine. 2004;29:1709–16.

    Article  CAS  Google Scholar 

  33. Tschirhart CE, Nagpurkar A, Whyne CM. Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J Biomech. 2004;37:653–60.

    Article  Google Scholar 

  34. Wilcox RK. The biomechanics of vertebroplasty: a review. Proc Inst Mech Eng H. 2004;218:1–10.

    Article  CAS  Google Scholar 

  35. Panjabi MM, Maak TG, Ivancic PC, et al. Dynamic intervertebral foramen narrowing during simulated rear impact. Spine. 2006;31:E128–34.

    Article  Google Scholar 

  36. Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36:897–904.

    Article  Google Scholar 

  37. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–50.

    Article  Google Scholar 

  38. Crawford RP, Rosenberg WS, Keaveny TM. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng. 2003;125:434–8.

    Article  Google Scholar 

  39. Anderson IA, Bowden M, Wyatt TP. Stress analysis of hemispherical ceramic hip prosthesis bearings. Med Eng Phys. 2005;27:115–22.

    Article  CAS  Google Scholar 

  40. Yeni YN, Hou FJ, Ciarelli T, et al. Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone. Ann Biomed Eng. 2003;31:726–32.

    Article  Google Scholar 

  41. Ito S, Ivancic PC, Pearson AM, et al. Cervical intervertebral disc injury during simulated frontal impact. Eur Spine J. 2005;14:356–65.

    Article  CAS  Google Scholar 

  42. Panjabi MM, Ito S, Pearson AM, et al. Injury mechanisms of the cervical intervertebral disc during simulated whiplash. Spine. 2004;29:1217–25.

    Article  Google Scholar 

  43. Qiu TX, Teo EC, Zhang QH. Comparison of kinematics between thoracolumbar T11-t12 and T12-L1 functional spinal units. Proc Inst Mech Eng H. 2006;220:493–504.

    Article  Google Scholar 

  44. Qiu TX, Tan KW, Lee VS, et al. Investigation of thoracolumbar T12-L1 burst fracture mechanism using finite element method. Med Eng Phys. 2006;28:656–64.

    Article  Google Scholar 

  45. Ivancic PC, Coe MP, Ndu AB, et al. Dynamic mechanical properties of intact human cervical spine ligaments. Spine J. 2007;7:659–65.

    Article  Google Scholar 

  46. Weiss JA, Gardiner JC. Computational modeling of ligament mechanics. Crit Rev Biomed Eng. 2001;29:303–71.

    Article  CAS  Google Scholar 

  47. Hou FJ, Lang SM, Hoshaw SJ, et al. Human vertebral body apparent and hard tissue stiffness. J Biomech. 1998;31:1009–15.

    Article  CAS  Google Scholar 

  48. Villarraga ML, Bellezza AJ, Harrigan TP, et al. The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. J Spinal Disord Tech. 2005;18:84–91.

    Article  Google Scholar 

  49. Nie WZ, Ye M, Liu ZD, et al. The patient-specific brace design and biomechanical analysis of adolescent idiopathic scoliosis. J Biomech Eng. 2009;131:041007.

    Article  Google Scholar 

  50. Wagnac EL, Aubin CE, Dansereau J. A new method to generate a patient-specific finite element model of the human buttocks. IEEE Trans Biomed Eng. 2008;55:774–83.

    Article  Google Scholar 

  51. Guo LX, Teo EC. Influence prediction of injury and vibration on adjacent components of spine using finite element methods. J Spinal Disord Tech. 2006;19:118–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature B.V. and People's Medical Publishing House

About this chapter

Cite this chapter

Yabo, Y. (2018). Finite Element Analysis (FEA) Technology. In: Pei, G. (eds) Digital Orthopedics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1076-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-1076-1_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-1074-7

  • Online ISBN: 978-94-024-1076-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics