Skip to main content

DNA Dependent DNA Polymerases as Targets for Low-Weight Molecular Inhibitors: State of Art and Prospects of Rational Design

  • Chapter
  • First Online:
  • 1586 Accesses

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 17))

Abstract

DNA dependent DNA polymerases (DNA pols) are key enzymes providing the processes of DNA replication and reparation in living systems. Exceptional importance of DNA pols makes them to be attractive targets for specific low-molecular weight inhibitors, which can be used (and are actually used) as molecular tuning tools in molecular biology investigations, and as antineoplastic and antiviral drugs as well. Detailed comprehension of structural insights of pol–inhibitor interaction would not only give a possibility to design new drugs with highly selective activity with respect to the targeted polymerases, but would essentially extend our understanding of the structural basis of replicative/reparative processes as a whole. Several computational approaches including sophisticated modeling of protein structure, blind and site-oriented docking of inhibitor molecules, molecular dynamics simulation of pol–inhibitor complexes and free energy decomposition analysis are useful tools to improve the quality of structural analysis of pol–inhibitor interactions as well as selectivity of pols’ inhibitors developed de novo. Extended application of these methods is principle tendency in modern rational design, including search and/or design of new inhibitors of DNA polymerases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the literature, these components of polymerase domain are also often named “domains”, which makes sense due to their different spatial folds. However, to avoid terminological confusion, we propose to consider them as subdomains of a unified polymerase domain.

  2. 2.

    Some researchers [31] consider the pyrophosphate analogs as a separate inhibitor group (product analogs’ group).

  3. 3.

    Now Accerlys Inc. has discounted a development and support of Insight II. Functionality of this software is transferred to Discovery Studio and Pipeline Pilot program suites.

References

  1. Berdis AJ (2009) Mechanisms of DNA polymerases. Chem Rev 109(7):2862–2879

    CAS  Google Scholar 

  2. Bebenek K, Kunkel TA (2004) Functions of DNA polymerases. Adv Protein Chem 69:137–65

    CAS  Google Scholar 

  3. Hübscher U, Spadari S, Villani G, Maga G (2010) DNA polymerases: discovery, characterization and functions in cellular DNA transactions. World Scientific, New Jersey

    Google Scholar 

  4. Haracska L, Johnson RE, Prakash L, Prakash S (2005) Trf4 and Trf5 proteins of Saccharomyces cerevisiae exhibit poly(A) RNA polymerase activity but no DNA polymerase activity. Mol Cell Biol 25(22):10183–10189

    CAS  Google Scholar 

  5. Steitz TA (1999) DNA polymerases: structural diversity and common mechanisms. J Biol Chem 274(25):17395–17398

    CAS  Google Scholar 

  6. Prindle MJ, Schmitt MW, Parmeggiani F, Loeb LA (2013) A substitution in the fingers domain of DNA polymerase δ reduces fidelity by altering nucleotide discrimination in the catalytic site. J Biol Chem 288(8):5572–5580

    CAS  Google Scholar 

  7. Kunkel TA (2004) DNA replication fidelity. J Biol Chem 279(17):16895–16898

    CAS  Google Scholar 

  8. Tsai YC, Johnson KA (2006) A new paradigm for DNA polymerase specificity. Biochemistry 45(32):9675–9687

    CAS  Google Scholar 

  9. Johnson KA (2010) The kinetic and chemical mechanism of high-fidelity DNA polymerases. Biochim Biophys Acta 1804(5):1041–1048

    Google Scholar 

  10. Gouge J, Ralec C, Henneke G, Delarue M (2012) Molecular recognition of canonical and deaminated bases by P. abyssi family B DNA polymerase. J Mol Biol 423:315–336

    CAS  Google Scholar 

  11. Breyer WA, Matthews BW (2001) A structural basis for processivity. Protein Sci 10(9):1699–1711

    CAS  Google Scholar 

  12. Camps M, Loeb LA (2004) When pol I goes into high gear: processive DNA synthesis by pol I in the cell. Cell Cycle 3(2):116–118s

    CAS  Google Scholar 

  13. Stumpf JD, Copeland WC (2011) Mitochondrial DNA replication and disease: insights from DNA polymerase γ mutations. Cell Mol Life Sci 68 (2): 219–233

    CAS  Google Scholar 

  14. Banach-Orlowska M, Fijalkowska IJ, Schaaper RM, Jonczyk P (2005) DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Mol Microbiol 58(1):61–70

    CAS  Google Scholar 

  15. Muzi-Falconi M, Giannattasio M, Foiani M, Plevani P (2003) The DNA polymerase α-primase complex: multiple functions and interactions. ScientificWorldJournal 17(3):21–33

    Google Scholar 

  16. Hübscher U, Maga G, Spadari S (2002) Eukaryotic DNA polymerases. Annu Rev Biochem 71:133–163

    Google Scholar 

  17. Edwards S, Li CM, Levy DL, Brown J, Snow PM, Campbell JL (2003) Saccharomyces cerevisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion. Mol Cell Biol 23(8):2733–2748

    CAS  Google Scholar 

  18. Gan GN, Wittschieben JP, Wittschieben BØ, Wood RD (2008) DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res 18(1):174–183

    CAS  Google Scholar 

  19. Kelman Z, O’Donnell M (1995) DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu Rev Biochem 64:171–200

    CAS  Google Scholar 

  20. O’Donnell M, Jeruzalmi D, Kuriyan J (2001) Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC. Curr Biol 11(22):R935–946

    Google Scholar 

  21. Cann IK, Komori K, Toh H, Kanai S, Ishino Y (1998) A heterodimeric DNA polymerase: evidence that members of Euryarchaeota possess a distinct DNA polymerase. Proc Natl Acad Sci U S A 95(24):14250–14255

    CAS  Google Scholar 

  22. Jokela M, Eskelinen A, Pospiech H, Rouvinen J, Syväoja JE (2004) Characterization of the 3’ exonuclease subunit DP1 of Methanococcus jannaschii replicative DNA polymerase D. Nucleic Acids Res 32(8):2430–2440

    CAS  Google Scholar 

  23. Hayashi I, Morikawa K, Ishino Y (1999) Specific interaction between DNA polymerase II (PolD) and RadB, a Rad51/Dmc1 homolog, in Pyrococcus furiosus. Nucleic Acids Res 27(24):4695–4702

    CAS  Google Scholar 

  24. Yamtich J, Sweasy JB (2010) DNA polymerase family X: function, structure, and cellular roles. Biochim Biophys Acta 1804(5):1136–1150

    Google Scholar 

  25. Goodman MF (2002) Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem 71:17–50

    CAS  Google Scholar 

  26. Mori T, Nakamura T, Okazaki N, Furukohri A, Maki H, Akiyama MT (2012) Escherichia coli DinB inhibits replication fork progression without significantly inducing the SOS response. Genes Genet Syst 87(2):75–87

    CAS  Google Scholar 

  27. Jarosz DF, Godoy VG, Walker GC (2007) Proficient and accurate bypass of persistent DNA lesions by DinB DNA polymerases. Cell Cycle 6(7):817–822

    CAS  Google Scholar 

  28. Patel M, Jiang Q, Woodgate R, Cox MM, Goodman MF (2010) A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit Rev Biochem Mol Biol 45(3):171–184

    CAS  Google Scholar 

  29. Sutton MD, Walker GC (2001) Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci U S A 98(15):8342–8349

    CAS  Google Scholar 

  30. Ohmori H, Hanafusa T, Ohashi E, Vaziri C (2009) Separate roles of structured and unstructured regions of Y-family DNA polymerases. Adv Protein Chem Struct Biol 78:99–146

    CAS  Google Scholar 

  31. Öberg B (2006) Rational design of polymerase inhibitors as antiviral drugs. Antiviral Res. 71(2–3):90–95

    Google Scholar 

  32. Wright GE, Brown NC (1990) Deoxyribonucleotide analogs as inhibitors and substrates of DNA polymerases. Pharmacol Ther 47(3):447–497

    CAS  Google Scholar 

  33. Razonable RR (2011) Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin Proc 86(10):1009–1026

    CAS  Google Scholar 

  34. De Clercq E (2007) The acyclic nucleoside phosphonates from inception to clinical use: historical perspective. Antiviral Res 75:1–13

    CAS  Google Scholar 

  35. Magee WC, Evans DH (2012) The antiviral activity and mechanism of action of (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] (HPMP) nucleosides. Antiviral Res 96(2):169–180

    CAS  Google Scholar 

  36. Merta A, Votruba I, Rosenberg I, Otmar M, Hrebabecký H, Bernaerts R, Holý A (1990) Inhibition of herpes simplex virus DNA polymerase by diphosphates of acyclic phosphonylmethoxyalkyl nucleotide analogues. Antiviral Res 13(5):209–218

    CAS  Google Scholar 

  37. Xiong X, Smith JL, Kim C, Huang ES, Chen MS (1996) Kinetic analysis of theinteraction of cidofovir diphosphate with human cytomegalovirus DNApolymerase. Biochem Pharmacol 51:1563–1567

    CAS  Google Scholar 

  38. Xiong X, Smith JL, Chen MS (1997) Effect of incorporation of cidofovir into DNA by human cytomegalovirus DNA polymerase on DNA elongation. Antimicrob Agents Chemother 41:594–599

    CAS  Google Scholar 

  39. Magee WC, Hostetler KY, Evans DH (2005) Mechanism of inhibition of vaccinia virus DNA polymerase by cidofovir diphosphate. Antimicrob Agents Chemother 49, 3153–3162

    CAS  Google Scholar 

  40. Magee WC, Aldern KA, Hostetler KY, Evans DH (2008) Cidofovir and (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine are highly effective inhibitors of vaccinia virus DNA polymerase when incorporated into the template strand. Antimicrob Agents Chemother 52, 586–597

    CAS  Google Scholar 

  41. Birkus G, Rejman D, Otmar M, Votruba I, Rosenberg I, Holy A (2004) The substrate activity of (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine diphosphate toward DNA polymerases alpha, delta and epsilon. Antivir Chem Chemother 15:23–33

    CAS  Google Scholar 

  42. Magee WC, Valiaeva N, Beadle JR, Richman DD, Hostetler KY, Evans DH (2011) Antimicrob Agents Chemother 55(11):5063–5072

    CAS  Google Scholar 

  43. De Clercq E (2011) The clinical potential of the acyclic (and cyclic) nucleoside phosphonates. The magic of the phosphonate bond. Biochem Pharmacol 82:99–109

    CAS  Google Scholar 

  44. Andrei G, Snoeck R (2010) Cidofovir activity against poxvirus infections. Viruses 2(12):2803–2830

    CAS  Google Scholar 

  45. Corey L, Benedetti J, Critchlow C, Mertz G, Douglas J, Fife K, Fahnlander A, Remington ML, Winter C, Dragavon J (1983) Treatment of primary first-episode genital herpes simplex virus infections with acyclovir: results of topical, intravenous and oral therapy. J Antimicrob Chemother 12(Suppl B):79–88

    Google Scholar 

  46. Serota FT, Starr SE, Bryan CK, Koch PA, Plotkin SA, August CS (1982) Acyclovir treatment of herpes zoster infections: use in children undergoing bone marrow transplantation. JAMA 247:2132–2135

    CAS  Google Scholar 

  47. De Clercq E (2004) Discovery and development of BVDU (brivudin) as a therapeutic for the treatment of herpes zoster. Biochem Pharmacol 68:2301–2315

    CAS  Google Scholar 

  48. Superti F, Ammendolia MG, Marchetti M (2008) New advances in anti-HSV chemotherapy. Curr Med Chem 15:900–911

    CAS  Google Scholar 

  49. Nichols WG, Boeckh M (2000) Recent advances in the therapy and prevention of CMV infections. J Clin Virol 16:25–40

    CAS  Google Scholar 

  50. Sarisky RT, Bacon TH, Boon RJ, Duffy KE, Esser KM, Leary J, Locke LA, Nguyen TT, Quail MR, Saltzman R (2003) Profiling penciclovir susceptibility and prevalence of resistance of herpes simplex virus isolates across eleven clinical trials. Arch Virol 148(9):1757–1769

    CAS  Google Scholar 

  51. Acosta EP, Fletcher CV (1997) Valacyclovir. Ann Pharmacother 31:185–191

    CAS  Google Scholar 

  52. Mizushina Y (2009) Specific inhibitors of mammalian DNA polymerase species. Biotechnol Biochem 73(6):1239–1251

    CAS  Google Scholar 

  53. Barakat KH, Gajewski MM, Tuszynski JA (2012) DNA polymerase beta (pol β) inhibitors: a comprehensive overview. Drug Discov Today 17(15–16):913–920

    CAS  Google Scholar 

  54. Chen J, Zhang YH, Wang LK, Sucheck SJ, Snow AM, Hecht SM (1998) Inhibitors of DNA polymerase β from Schoepfia californica. J Chem Soc Chem Commun 24:2769–2770

    Google Scholar 

  55. Spadari S, Pedrali-Noy G, Falaschi MC, Ciarrocchi G (1984) Control of DNA replication and cell proliferation in eukaryotes by aphidicolin. Toxicol Pathol 12(2):143–148

    CAS  Google Scholar 

  56. Arabshahi L, Brown N, Khan N, Wright G. (1988) Inhibition of DNApolymerase alpha by aphidicolin derivatives. Nucleic Acids Res 16:5107–5113

    CAS  Google Scholar 

  57. Ma J, Starck SR, Hecht SM (1999) DNA polymerase β inhibitors from Tetracera boiviniana. J Nat Prod 62:1660–1663

    CAS  Google Scholar 

  58. Deng JZ, Starck SR, Hecht SM (1999) Bis-5-alkylresorcinols from Panopsis rubescens that inhibit DNA polymerase β. J Nat Prod 62:477–480

    CAS  Google Scholar 

  59. Mizushina Y, Matsukage A, Sakaguchi K (1998) The biochemical inhibition mode of bredinin-5’-monophosphate on DNA polymerase β. Biochim Biophys Acta 1403(1):5–11

    CAS  Google Scholar 

  60. Talanian RV, Brown NC, McKenna CE, Ye TG, Levy JN, Wright GE (1989) Carbonyldiphosphonate, a selective inhibitor of mammalian DNA polymerase δ. Biochemistry 28(21):8270–8274

    CAS  Google Scholar 

  61. Oshige M, Takenouchi M, Kato Y, Kamisuki S, Takeuchi T, Kuramochi K, Shiina I, Suenaga Y, Kawakita Y, Kuroda K, Sato N, Kobayashi S, Sugawara F, Sakaguchi K (2004) Taxol derivatives are selective inhibitors of DNA polymerase α. Bioorg Med Chem 12(10):2597–2601

    CAS  Google Scholar 

  62. Yamanaka K, Dorjsuren D, Eoff RL, Egli M, Maloney DJ, Jadhav A, Simeonov A, Lloyd RS (2012) A comprehensive strategy to discover inhibitors of the translesion synthesis DNA polymerase κ. PLoS One 7(10): e45032

    CAS  Google Scholar 

  63. Maeda N, Kokai Y, Ohtani S, Sahara H, Kuriyama I, Kamisuki S, Takahashi S, Sakaguchi K, Sugawara F, Yoshida H, Sato N, Mizushina Y (2007) Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase alpha. Biochem Biophys Res Commun 352(2):390–396

    CAS  Google Scholar 

  64. Mizushina Y, Xu X, Asano N, Kasai N, Kato A, Takemura M, Asahara H, Linn S, Sugawara F, Yoshida H, Sakaguchi K (2003) The inhibitory action of pyrrolidine alkaloid, 1,4-dideoxy-1,4-imino-d-ribitol, on eukaryotic DNA polymerases. Biochem Biophys Res Commun 304:78–85

    CAS  Google Scholar 

  65. Li SS, Gao Z, Feng X, Hecht SM (2004) Biscoumarin derivatives from Edgeworthia gardneri that inhibit the lyase activity of DNA polymerase β. J Nat Prod 67(9):1608–1610

    CAS  Google Scholar 

  66. Feng X, Gao Z, Li S, Jones SH, Hecht SM (2004) DNA polymerase β lyase inhibitors from Maytenus putterlickoides. J Nat Prod 67:1744–1747

    CAS  Google Scholar 

  67. Mizushina Y, Watanabe I, Togashi H, Hanashima L, Takemura M, Ohta K, Sugawara F, Koshino H, Esumi Y, Uzawa J, Matsukage A, Yoshida S, Sakaguchi K (1998) An ergosterol peroxide, a natural product that selectively enhances the inhibitory effect of linoleic acid on DNA polymerase β. Biol Pharm Bull 21(5):444–448

    CAS  Google Scholar 

  68. Mizushina Y, Tanaka N, Kitamura A, Tamai K, Ikeda M, Takemura M, Sugawara F, Arai T, Matsukage A, Yoshida S, Sakaguchi K (1998) The inhibitory effect of novel triterpenoid compounds, fomitellic acids, on DNA polymerase beta. Biochem J 330(Pt 3):1325–1332

    CAS  Google Scholar 

  69. Tanaka N, Kitamura A, Mizushina Y, Sugawara F, Sakaguchi K (1998) Fomitellic acids, triterpenoid inhibitors of eukaryotic DNA polymerases from a basidiomycete, Fomitella fraxinea. J Nat Prod 61(2):193–197

    CAS  Google Scholar 

  70. Ishida T, Mizushina Y, Yagi S, Irino Y, Nishiumi S, Miki I, Kondo Y, Mizuno S, Yoshida H, Azuma T, Yoshida M (2012) Inhibitory effects of glycyrrhetinic acid on DNA polymerase and inflammatory activities. Evid Based Complement Alternat Med 2012:650514

    Google Scholar 

  71. Deng JZ, Starck SR, Hecht SM, Ijames CF, Hemling ME (1999) Harbinatic acid, a novel and potent DNA polymerase β inhibitor from Hardwickia binata. J Nat Prod 62:1000–1002

    CAS  Google Scholar 

  72. Togashi H, Mizushina Y, Takemura M, Sugawara F, Koshino H, Esumi Y, Uzawa J, Kumagai H, Matsukage A, Yoshida S, Sakaguchi K (1998) 4-Hydroxy-17-methylincisterol, an inhibitor of DNA polymerase-α activity and the growth of human cancer cells in vitro. Biochem Pharmacol 56(5):583–590

    CAS  Google Scholar 

  73. Cao S, Gao Z, Thomas SJ, Hecht SM, Lazo JS, Kingston DG (2004) Marine sesquiterpenoids that inhibit the lyase activity of DNA polymerase β. J Nat Prod 67:1716–1718

    CAS  Google Scholar 

  74. Mizushina Y, Ishidoh T, Kamisuki S, Nakazawa S, Takemura M, Sugawara F, Yoshida H, Sakaguchi K (2003) Flavonoid glycoside: a new inhibitor of eukaryotic DNA polymerase alpha and a new carrier for inhibitor-affinity chromatography. Biochem Biophys Res Commun 301(2):480–487

    CAS  Google Scholar 

  75. Ogawa A, Murate T, Izuta S, Takemura M, Furuta K, Kobayashi J, Kamikawa T, Nimura Y, Yoshida S (1998) Sulfated glycoglycerolipid from archaebacterium inhibits eukaryotic DNA polymerase α, β and retroviral reverse transcriptase and affects methylmethanesulfonate cytotoxicity

    Google Scholar 

  76. Mizushina Y, Manita D, Takeuchi T, Sugawara F, Kumamoto-Yonezawa Y, Matsui Y, Takemura M, Sasaki M, Yoshida H, Takikawa H (2009) The inhibitory action of kohamaic acid A derivatives on mammalian DNA polymerase β. Molecules 14(1):102–121

    CAS  Google Scholar 

  77. Sun DA, Starck SR, Locke EP, Hecht SM (1999) DNA polymerase beta inhibitors from Sandoricum koetjape. J Nat Prod 62: 1110–1113

    CAS  Google Scholar 

  78. Hu HY, Horton JK, Gryk MR, Prasad R, Naron JM, Sun DA, Hecht SM, Wilson SH, Mullen GP (2004) Identification of small molecule synthetic inhibitors of DNA polymerase β by NMR chemical shift mapping. J Biol Chem 279:39736–39744

    CAS  Google Scholar 

  79. Mizushina Y, Tanaka N, Yagi H, Kurosawa T, Onoue M, Seto H, Horie T, Aoyagi N, Yamaoka M, Matsukage A, Yoshida S, Sakaguchi K (1996) Fatty acids selectively inhibit eukaryotic DNA polymerase activities in vitro. Biochim Biophys Acta 1308(3):256–262

    Google Scholar 

  80. Mizushina Y, Yoshida S, Matsukage A, Sakaguchi K (1997) The inhibitory action of fatty acids on DNA polymerase β. Biochim Biophys Acta 1336(3):509–521

    CAS  Google Scholar 

  81. Mizushina Y, Watanabe I, Ohta K, Takemura M, Sahara H, Takahashi N, Gasa S, Sugawara F, Matsukage A, Yoshida S, Sakaguchi K (1998) Studies on inhibitors of mammalian DNA polymerase α and β: sulfolipids from a pteridophyte, Athyrium niponicum. Biochem Pharmacol 55(4):537–541

    CAS  Google Scholar 

  82. Mizushina Y, Ohkubo T, Sugawara F, Sakaguchi K. (2000) Structure of lithocholic acid binding to the N-terminal 8-kDa domain of DNA polymerase β. Biochemistry 39(41):12606–12613

    CAS  Google Scholar 

  83. Ogawa A, Murate T, Suzuki M, Nimura Y, Yoshida S (1998) Lithocholic acid, a putative tumor promoter, inhibits mammalian DNA polymerase β. Jpn J Cancer Res 89(11):1154–1159

    CAS  Google Scholar 

  84. Chaturvedula VS, Gao Z, Jones SH, Feng X, Hecht SM, Kingston DG (2004) A new ursane tri-terpene from Monochaetum vulcanicum that inhibits DNA polymerase β lyase. J Nat Prod 67:899–901

    CAS  Google Scholar 

  85. Mizushina Y, Ishidoh T, Takeuchi T, Shimazaki N, Koiwai O, Kuramochi K, Kobayashi S, Sugawara F, Sakaguchi K, Yoshida H (2005) Monoacetylcurcumin: a new inhibitor of eukaryotic DNA polymerase λ and a new ligand for inhibitor-affinity chromatography. Biochem Biophys Res Commun 337(4):1288–1295

    CAS  Google Scholar 

  86. Takeuchi T, Ishidoh T, Iijima H, Kuriyama I, Shimazaki N, Koiwai O, Kuramochi K, Kobayashi S, Sugawara F, Sakaguchi K, Yoshida H, Mizushina Y (2006) Structural relationship of curcumin derivatives binding to the BRCT domain of human DNA polymerase λ. Genes Cells 11(3):223–235

    CAS  Google Scholar 

  87. Maloney DJ, Deng JZ, Starck SR, Gao Z, Hecht SM (2005) (ı)-Myristinin A, a naturally occurring DNA polymerase β inhibitor and potent DNA-damaging agent. J Am Chem Soc 127(12): 4140–4141

    CAS  Google Scholar 

  88. Shiomi K, Kuriyama I, Yoshida H, Mizushina Y (2013) Inhibitory effects of myricetin on mammalian DNA polymerase, topoisomerase and human cancer cell proliferation. Food Chem 139(1–4):910–918

    CAS  Google Scholar 

  89. Prakash Chaturvedula VS, Hecht SM, Gao Z, Jones SH, Feng X, Kingston DG (2004) New neolignans that inhibit DNA polymerase beta lyase. J Nat Prod 67(6): 964–967

    CAS  Google Scholar 

  90. Deng JZ, Starck SR, Hecht SM (2000) Pentacyclic triterpenoids from Freziera sp. that inhibit DNA polymerase β. Bioorg Med Chem 8:247–250

    CAS  Google Scholar 

  91. Brideau RJ, Knechtel ML, Huang A, Vaillancourt VA, Vera EE, Oien NL, Hopkins TA, Wieber JL, Wilkinson KF, Rush BD, Schwende FJ, Wathen MW (2002) Broad-spectrum antiviral activity of PNU-183792, a 4-oxo-dihydroquinoline, against human and animal herpesviruses. Antiviral Res 54(1):19–28

    CAS  Google Scholar 

  92. Oien NL, Brideau RJ, Hopkins TA, Wieber JL, Knechtel ML, Shelly JA, Anstadt RA, Wells PA, Poorman RA, Huang A, Vaillancourt VA, Clayton TL, Tucker JA, Wathen MW (2002) Broad-spectrum antiherpes activities of 4-hydroxyquinoline carboxamides, a novel class of herpesvirus polymerase inhibitors. Antimicrob Agents Chemother 46(3):724–730

    CAS  Google Scholar 

  93. Hazan C, Boudsocq F, Gervais V, Saurel O, Ciais M, Cazaux C, Czaplicki J, Milon A (2008) Structural insights on the pamoic acid and the 8 kDa domain of DNA polymerase β complex: towards the design of higher-affinity inhibitors. BMC Struct Biol 8:22

    Google Scholar 

  94. Mizushina Y, Zhang J, Pugliese A, Kim SH, Lü J (2010) Anti-cancer gallotannin penta-O-galloyl-beta-d-glucose is a nanomolar inhibitor of select mammalian DNA polymerases. Biochem Pharmacol 80(8):1125–1132

    CAS  Google Scholar 

  95. Mizushina Y, Kamisuki S, Kasai N, Ishidoh T, Shimazaki N, Takemura M, Asahara H, Linn S, Yoshida S, Koiwai O, Sugawara F, Yoshida H, Sakaguchi K (2002) Petasiphenol: a DNA polymerase λ inhibitor. Biochemistry 41(49):14463–14471

    CAS  Google Scholar 

  96. Mizushina Y, Xu X, Matsubara K, Murakami C, Kuriyama I, Oshige M, Takemura M, Kato N, Yoshida H, Sakaguchi K (2003) Pyridoxal 5’-phosphate is a selective inhibitor in vivo of DNA polymerase α and e. Biochem Biophys Res Commun 312(4):1025–1032

    CAS  Google Scholar 

  97. Locatelli GA, Savio M, Forti L, Shevelev I, Ramadan K, Stivala LA, Vannini V, Hübscher U, Spadari S, Maga G (2005) Inhibition of mammalian DNA polymerases by resveratrol: mechanism and structural determinants. Biochem J 389(Pt 2): 259–268

    CAS  Google Scholar 

  98. Strittmatter T, Bareth B, Immel TA, Huhn T, Mayer TU, Marx A (2011) Small molecule inhibitors of human DNA polymerase λ. ACS Chem Biol 6(4):314–319

    CAS  Google Scholar 

  99. Ishimaru C, Yonezawa Y, Kuriyama I, Nishida M, Yoshida H, Mizushina Y (2008) Inhibitory effects of cholesterol derivatives on DNA polymerase and topoisomerase activities, and human cancer cell growth. Lipids 43(4):373–382

    CAS  Google Scholar 

  100. Perpelescu M, Kobayashi J, Furuta M, Ito Y, Izuta S, Takemura M, Suzuki M, Yoshida S (2002) Novel phenalenone derivatives from a marine-derived fungus exhibit distinct inhibition spectra against eukaryotic DNA polymerases. Biochemistry 41:7610–7616

    CAS  Google Scholar 

  101. Mizushina Y, Nakanishi R, Kuriyama I, Kamiya K, Satake T, Shimazaki N, Koiwai O, Uchiya-ma Y, Yonezawa Y, Takemura M, Sakaguchi K, Yoshida H (2006) Beta-sitosterol-3-O-beta-d-glucopyranoside: a eukaryotic DNA polymerase λ inhibitor. J Steroid Biochem Mol Biol 99(2–3):100–107

    CAS  Google Scholar 

  102. Mizushina Y, Kasai N, Iijima H, Sugawara F, Yoshida H, Sakaguchi K (2005) Sulfo-quinovosyl-acyl-glycerol (SQAG), a eukaryotic DNA polymerase inhibitor and anti-cancer agent. Curr Med Chem Anticancer Agents 5(6):613–625

    CAS  Google Scholar 

  103. Mizushina, Y. et al. (2002) A plant phytotoxin, solanapyrone A, is an inhibitor of DNA polymerase beta and lambda. J. Biol. Chem 277:630–638

    CAS  Google Scholar 

  104. Kasai N, Mizushina Y, Murata H, Yamazaki T, Ohkubo T, Sakaguchi K, Sugawara F (2005) Sulfoquinovosylmonoacylglycerol inhibitory mode analysis of rat DNA polymerase β. FEBS J 272(17):4349–4361

    CAS  Google Scholar 

  105. Mizushina Y, Nakagawa K, Shibata A, Awata Y, Kuriyama I, Shimazaki N, Koiwai O, Uchiyama Y, Sakaguchi K, Miyazawa T, Yoshida H (2006) Inhibitory effect of tocotrienol on eukaryotic DNA polymerase λ and angiogenesis. Biochem Biophys Res Commun 339(3):949–955

    CAS  Google Scholar 

  106. Deng JZ, Starck SR, Hecht SM (1999) DNA polymerase β inhibitors from Baeckea gunniana. J Nat Prod 62:1624–1626

    CAS  Google Scholar 

  107. Andrei G, De Clercq E, Snoeck R (2009) Viral DNA polymerase inhibitors. In: Raney KD, Götte M, Cameron CE (eds) Viral genome replication. Springer, New York, p 481–526

    Google Scholar 

  108. Schnute ME, Cudahy MM, Brideau RJ, Homa FL, Hopkins TA, Knechtel ML, Oien NL, Pitts TW, Poorman RA, Wathen MW, Wieber JL (2005) 4-Oxo-4,7-dihydrothieno[2,3-b]pyridines as non-nucleoside inhibitors of human cytomegalovirus and related herpesvirus polymerases. J Med Chem 48(18):5794–5804

    CAS  Google Scholar 

  109. Schnute ME, Anderson DJ, Brideau RJ, Ciske FL, Collier SA, Cudahy MM, Eggen M, Genin MJ, Hopkins TA, Judge TM, Kim EJ, Knechtel ML, Nair SK, Nieman JA, Oien NL, Scott A, Tanis SP, Vaillancourt VA, Wathen MW, Wieber JL (2007) 2-Aryl-2-hydroxyethylamine substituted 4-oxo-4,7-dihydrothieno[2,3-b]pyridines as broad-spectrum inhibitors of human herpesvirus polymerases. Bioorg Med Chem Lett 17(12):3349–3353

    CAS  Google Scholar 

  110. Larsen SD, Zhang Z, DiPaolo BA, Manninen PR, Rohrer DC, Hageman MJ, Hopkins TA, Knechtel ML, Oien NL, Rush BD, Schwende FJ, Stefanski KJ, Wieber JL, Wilkinson KF, Zamora KM, Wathen MW, Brideau RJ (2007) 7-Oxo-4,7-dihydrothieno[3,2-b]pyridine-6-carboxamides: synthesis and biological activity of a new class of highly potent inhibitors of human cytomegalovirus DNA polymerase. Bioorg Med Chem Lett 17(14):3840–3844

    CAS  Google Scholar 

  111. Hu H, Zhang J, Lee HJ, Kim SH, Lü J (2009) Penta-O-galloyl-beta-d-glucose induces S- and G(1)-cell cycle arrests in prostate cancer cells targeting DNA replication and cyclin D1. Carcinogenesis 30(5):818–823

    CAS  Google Scholar 

  112. Zhang J, Li L, Kim SH, Hagerman AE, Lu J (2009) Anti-cancer, anti-diabetic and other pharmacologicand biological activities of penta-galloyl-glucose. Pharm res 26:2066–2080

    CAS  Google Scholar 

  113. Chai Y, Lee HJ, Shaik AA, Nkhata K, Xing C, Zhang J, Jeong SJ, Kim SH, Lu J (2010) Penta-O-galloyl-beta-d-glucose induces G1 arrest and DNA replicative S-phase arrest independently of cyclin-dependent kinase inhibitor 1A, cyclin-dependent kinase inhibitor 1B and P53 in human breast cancer cells and is orally active against triple negative xenograft growth. Breast Cancer Res 12(5):R67

    Google Scholar 

  114. Mizushina Y, Kasai N, Sugawara F, Iida A, Yoshida H, Sakaguchi K (2001) Three-dimensional structural model analysis of the binding site of lithocholic acid, an inhibitor of DNA polymerase β and DNA topoisomerase II. J Biochem 130(5):657–664

    CAS  Google Scholar 

  115. Mizushina Y, Kasai N, Miura K, Hanashima S, Takemura M, Yoshida H, Sugawara F, Sakaguchi K (2004) Structural relationship of lithocholic acid derivatives binding to the N-terminal 8-kDa domain of DNA polymerase β. Biochemistry 43(33):10669–10677

    CAS  Google Scholar 

  116. Shi S, Yan L, Yang Y, Fisher-Shaulsky J, Thacher T (2003) An extensible and systematic force field, ESFF, for molecular modeling of organic, inorganic, and organometallic systems. J Comput Chem 24(9):1059–1076

    CAS  Google Scholar 

  117. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    CAS  Google Scholar 

  118. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Auto-mated docking using a lamarckian genetic algorithm and and empirical binding free energy function J Comput Chem 19: 1639–1662

    CAS  Google Scholar 

  119. Murakami S, Kamisuki S, Takata K, Kasai N, Kimura S, Mizushina Y, Ohta K, Sugawara F, Sakaguchi K (2006) Site-directed mutational analysis of structural interactions of low molecule compounds binding to the N-terminal 8 kDa domain of DNA polymerase β. Biochem Biophys Res Commun 350(1):7–16

    CAS  Google Scholar 

  120. Clarkson J, Campbell ID (2003) Studies of protein-ligand interactions by NMR. Biochem Soc Trans 31(Pt 5):1006–1009

    CAS  Google Scholar 

  121. Mayer M, Meyer B (2001, Jun 27) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123(25):6108–6117

    CAS  Google Scholar 

  122. Meyer B, Klein J, Mayer M, Meinecke R, Möller H, Neffe A, Schuster O, Wülfken J, Ding Y, Knaie O, Labbe J, Palcic MM, Hindsgaul O, Wagner B, Ernst B (2004) Saturation transfer difference NMR spectroscopy for identifying ligand epitopes and binding specificities. Ernst Schering Res Found Workshop 44:149–167

    CAS  Google Scholar 

  123. Iriye R, Furukawa K, Nishida R, Kim C, Fukami H (1992) Isolation and synthesis of a new bio-antimutagen, petasiphenol, from scapes of Petasites japonicum. Biosci Biotechnol Biochem. 56(11):1773–1775

    CAS  Google Scholar 

  124. Zhang X, Moréra S, Bates PA, Whitehead PC, Coffer AI, Hainbucher K, Nash RA, Sternberg MJ, Lindahl T, Freemont PS (1998) Structure of an XRCC1 BRCT domain: a new protein–protein interaction module. EMBO J 17(21):6404–6411

    CAS  Google Scholar 

  125. Ketkar A, Zafar MK, Maddukuri L, Yamanaka K, Banerjee S, Egli M, Choi JY, Lloyd RS, Eoff RL (2013) Leukotriene biosynthesis inhibitor MK886 impedes DNA polymerase activity. Chem Res Toxicol 26(2):221–232

    CAS  Google Scholar 

  126. Berman HM (2000) The protein data bank. Nucleic Acids Res 28:235–242

    CAS  Google Scholar 

  127. Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, Thomas V, Rizzo RC, Case DA, James TL, Kuntz ID (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15(6):1219–1230

    CAS  Google Scholar 

  128. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    CAS  Google Scholar 

  129. Grosdidier A, Zoete V, Michielin O (2011) Fast docking using the CHARMM force field with EADock DSS. J Comput Chem 32(10): 2149–2159

    CAS  Google Scholar 

  130. Ummat A, Silverstein TD, Jain R, Buku A, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2011) Human DNA polymerase eta is pre-aligned for dNTP binding and catalysis. J Mol Biol 415: 627–634

    Google Scholar 

  131. Nakamura T, Zhao Y, Yamagata Y, Hua YJ, Yang W (2012) Watching DNA polymerase η make a phosphodiester bond. Nature 487(7406):196–201

    CAS  Google Scholar 

  132. Beckman JW, Wang Q, Guengerich FP (2008) Kinetic analysis of correct nucleotide insertion by a Y-family DNA polymerase reveals conformational changes both prior to and following phosphodiester bond formation as detected by tryptophan fluorescence. J Biol Chem 283(52):36711–36723

    CAS  Google Scholar 

  133. Eoff RL, Sanchez-Ponce R, Guengerich FP (2009) Conformational changes during nucleotide selection by Sulfolobus solfataricus DNA polymerase Dpo4. J Biol Chem 284(31): 21090–21099

    CAS  Google Scholar 

  134. Martin OA, Garro HA, Kurina Sanz MB, Pungitore CR, Tonn CE (2011) In silico study of the inhibition of DNA polymerase by a novel catalpol derivative. J Mol Model 17(10):2717–2723

    CAS  Google Scholar 

  135. Allouche AR (2011) Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem 32(1):174–182

    CAS  Google Scholar 

  136. Stewart JJ (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    CAS  Google Scholar 

  137. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Google Scholar 

  138. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4:435–447

    CAS  Google Scholar 

  139. Schüttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D 60:1355–1363

    Google Scholar 

  140. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    CAS  Google Scholar 

  141. Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57:678–683

    CAS  Google Scholar 

  142. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    CAS  Google Scholar 

  143. Li Y, Korolev S, Waksman G (1998) Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J 17:7514–7525

    CAS  Google Scholar 

  144. Pungitore CR, Ayub MJ, García M, Borkowski EJ, Sosa ME, Ciuffo G, Tonn CE (2004) Iridoids as allelochemicals and DNA polymerase inhibitors. J Nat Prod 67:357–361

    CAS  Google Scholar 

  145. Li J, Du Y, Liu X, Shen QC, Huang AL, Zheng MY, Luo XM, Jiang HL (2013) Binding sensi-tivity of adefovir to the polymerase from different genotypes of HBV: molecular modeling, docking and dynamics simulation studies. Acta Pharmacol Sin 34(2):319–328

    Google Scholar 

  146. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23: 318–326

    CAS  Google Scholar 

  147. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) Procheck—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    CAS  Google Scholar 

  148. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26: 1668–1688

    CAS  Google Scholar 

  149. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2004) Gaussian 03, Revision B.05. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  150. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method susing charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97(40):10269–10280

    CAS  Google Scholar 

  151. Wang JM, Wang W, Kollman PA (2001) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

    CAS  Google Scholar 

  152. Meagher KL, Redman LT, Carlson HA (2003) Development of polyphosphate parameters for use with the AMBER force field. J Comput Chem 24:1016–1025

    CAS  Google Scholar 

  153. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    CAS  Google Scholar 

  154. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    CAS  Google Scholar 

  155. Daga PR, Duan J, Doerksen RJ (2010) Computational model of hepatitis B virus DNA polymerase: molecular dynamics and docking to understand resistant mutations. Protein Sci 19:796–807

    CAS  Google Scholar 

  156. Yarmolyuk SM, Nyporko AYu, Bdzhola VG (2013) Rational design of protein kinase inhibitors. Biopolym Cell 29(4):339–347

    Google Scholar 

  157. Richartz A, Höltje M, Brandt B, Schäfer-Korting M, Höltje HD (2008) Targeting human DNA polymerase α for the inhibition of keratinocyte proliferation. Part 1. Homology model, active site architecture and ligand binding. J Enzyme Inhib Med Chem 23(1):94–100

    CAS  Google Scholar 

  158. Edelson RE, Gorycki PD, MacDonald TL (1990) The mechanism of aphidicolin bioinactivation by rat liver in vitro systems. Xenobiotica 20:273–287

    CAS  Google Scholar 

  159. Höltje M, Richartz A, Zdrazil B, Schwanke A, Dugovic B, Murruzzu C, Reissig HU, Korting HC, Kleuser B, Höltje HD, Schäfer-Korting M. (2010) Human polymerase α inhibitors for skin tumors. Part 2. Modeling, synthesis and influence on normal and transformed keratinocytes of new thymidine and purine derivatives. J Enzyme Inhib Med Chem 25(2):250–265

    Google Scholar 

  160. Schwanke A, Murruzzu C, Zdrazil B, Zuhse R, Natek M, Höltje M, Korting HC, Reissig HU, Höltje HD, Schäfer-Korting M (2010) Antitumor effects of guanosine-analog phosphonates identified by molecular modelling. Int J Pharm 397(1–2):9–18

    CAS  Google Scholar 

  161. Zdrazil B, Schwanke A, Schmitz B, Schäfer-Korting M, Höltje HD (2011) Molecular modelling studies of new potential human DNA polymerase α inhibitors. J Enzyme Inhib Med Chem 26(2):270–279

    CAS  Google Scholar 

  162. Karampuri S, Bag P, Yasmin S, Chouhan DK, Bal C, Mitra D, Chattopadhyay D, Sharon A (2012) Structure based molecular design, synthesis and biological evaluation of α-pyrone analogs as anti-HSV agent. Bioorg Med Chem Lett 22(19):6261–6266

    CAS  Google Scholar 

Download references

Acknowledgements

Author would like to sincere gratitude to Prof. Leonid Gorb, Prof. Alexei Kolezhuk, Oleg Lytuga, Tamara Limanska and Fedor Lavrik for their invaluable aid in preparing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Yu. Nyporko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nyporko, A. (2014). DNA Dependent DNA Polymerases as Targets for Low-Weight Molecular Inhibitors: State of Art and Prospects of Rational Design. In: Gorb, L., Kuz'min, V., Muratov, E. (eds) Application of Computational Techniques in Pharmacy and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9257-8_4

Download citation

Publish with us

Policies and ethics