Skip to main content

Global Snow Mass Measurements and the Effect of Stratigraphic Detail on Inversion of Microwave Brightness Temperatures

  • Chapter
  • First Online:
Book cover The Earth's Hydrological Cycle

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 46))

Abstract

Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as snow water equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions, but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment and the Helsinki University of Technology microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 and 37 GHz vertically polarised microwaves are consistent with advanced microwave scanning radiometer-earth observing system and special sensor microwave imager retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10-cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method, then it is equivalent to ±13 mm SWE (7 % of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson E (1976) A point energy and mass balance model of a snow cover. Office of Hydrology, National Weather Service, Silver Spring

    Google Scholar 

  • Andreadis K, Liang D, Tsang L, Lettenmaier D, Josberger E (2008) Characterization of errors in a coupled snow hydrology–microwave emission model. J Hydrometeor 9:149–164

    Article  Google Scholar 

  • Armstrong R, Brodzik M (2000) Validation of passive microwave snow algorithms. Proc IGARSS 2000(4):1561–1563

    Google Scholar 

  • Armstrong R, Brodzik M, Knowles K, Savoie M (2005) Global monthly EASE-grid snow water equivalent climatology. Boulder, Colorado USA: National Snow and Ice Data Center, URL http://nsidc.org/data/docs/daac/nsidc0271_ease_grid_swe_climatology.gd.html

  • Barnett TP, Adam J, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309

    Article  CAS  Google Scholar 

  • Best M, Pryor M, Clark D, Rooney G, Essery R, Ménard C et al (2011) The joint UK (JULES) land environment simulator, model description—Part 1: energy and water fluxes. Geosci Model Dev 4:677–699

    Article  Google Scholar 

  • Betts A, Köhler M, Zhang Y (2009) Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J Geophys Res 114

    Google Scholar 

  • Brasnett B (1999) A global analysis of snow depth for numerical weather prediction. J Appl Meteorol 38:726–740

    Article  Google Scholar 

  • Brown RD, Mote PW (2009) The response of northern hemisphere snow cover to a changing climate. J Clim 22:2124–2145

    Article  Google Scholar 

  • Brown R, Brasnett B, Robinson D (2003) Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos Ocean 41(1):1–14

    Article  Google Scholar 

  • Brucker L, Royer A, Picard G, Langlois A, Fily M (2011) Hourly simulations of the microwave brightness temperature of seasonal snow in Quebec, Canada, using a coupled snow evolution–emission model. Remote Sens Environ 115:1966–1977

    Article  Google Scholar 

  • Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J Glaciol 38(128):13–22

    Article  Google Scholar 

  • Budyko M (1958) The heat balance of the Earth’s surface. Department of Commerce, Weather Bureau

    Google Scholar 

  • Carroll T, Cline D, Fall G, Nilsson A, Li L, Rost A (2001) NOHRSC operations and the simulation of snow cover properties for the coterminous U.S. 69th Annual Meeting of the Western Snow Conference. Sun Valley, Idaho USA

    Google Scholar 

  • Chang A, Hall J, Foster D (1987) Nimbus7 SMMR derived global snow cover parameters. Ann Glaciol 9(9):39–44

    Article  Google Scholar 

  • Chang A, Kelly R, Josberger E, Armstrong R, Foster J, Mognard N (2005) Analysis of ground-measured and passive-microwave-derived snow depth variations in midwinter across the Northern Great Plains. J Hydrometeor 6:20–33

    Article  Google Scholar 

  • Clifford D (2010) Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. Int J Remote Sens 31(14):3707–3726

    Article  Google Scholar 

  • Cline D, Elder K, Davis B, Hardy J, Liston GE, Imel D et al (2002) Overview of the NASA cold land processes field experiment (CLPX-2002). SPIE Proceedings, Hangzhou

    Google Scholar 

  • Davenport I, Sandells M, Gurney R (2012) The effects of variation in snow properties on passive microwave snow mass estimation. Remote Sens Environ 118:168–175

    Article  Google Scholar 

  • De Lannoy G, Reichle R, Houster P, Arsenault K, Verhoest N, Pauwels V (2010) Satellite-scale snow water equivalent assimilation into a high-resolution land surface model. J Hydrometeor 11:352–369

    Article  Google Scholar 

  • Dechant C, Moradkhani H (2011) Radiance data assimilation for operational snow and streamflow forecasting. Adv Water Resour 34(3):351–364

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J Royal Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Derksen C, Sturm M, Listen G, Holmgren J, Huntington H, Silis A et al (2009) Northwest Territories and Nunavut snow characteristics from a subarctic traverse: implications for passive microwave remote sensing. J Hydrometeorol 10:448–463

    Article  Google Scholar 

  • Dominé F, Shepson P (2002) Air-snow interactions and atmospheric chemistry. Science 297:1506–1510

    Article  Google Scholar 

  • Dong J, Walker J, Houser P, Sun C (2007) Scanning multichannel microwave radiometer snow water equivalent assimilation. J Geophys Res 112:D07108

    Google Scholar 

  • Drusch M, Vasiljevic D, Viterbo P (2004) ECMWF’s global snow analysis: assessment and revision based on satellite observations. J Appl Meteorol 43:1282–1294

    Article  Google Scholar 

  • Durand M, Margulis S (2006) Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent. J Hydrometeor 7:443–457

    Article  Google Scholar 

  • Durand E, Kim E, Margulis S (2008) Quantifying uncertainty in modelling snow microwave radiance for a mountain snowpack at the point-scale, including stratigraphic effects. IEEE Trans Geosci Remote Sens 46:1753–1767

    Article  Google Scholar 

  • Durand M, Kim E, Margulus S (2009). Radiance assimilation shows promise for snowpack characterization. Geophys Res Lett 29(2)

    Article  Google Scholar 

  • Durand M, Kim E, Margulis S, Molotch N (2011) A first-order characterization of errors from neglecting stratigraphy in forward and inverse passive microwave modelling of snow. IEEE Geosci Remote Sens Lett 8:730–734

    Article  Google Scholar 

  • Dutra E, Balsamo G, Viterbo P, Miranda P, Beljaars A, Schär C et al (2010) An improved snow scheme for the ECMWF land surface model: description and offline validation. J Hydrometeorol 11:899–916

    Article  Google Scholar 

  • Dye D (2002) Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrol Proc 16(15):3065–3077

    Article  Google Scholar 

  • Dyer J, Mote T (2006) Spatial variability and trends in observed snow depth over North America. Geophys Res Lett 33(16)

    Google Scholar 

  • Finnish Meteorological Institute. Globsnow Project Description (2012) http://www.globsnow.info/snow_workshop_2012/presentations/GlobSnow_Fact_Sheet_EuropeanSatelliteSnowMonitoringActivities.pdf. Accessed 8th Aug, 2013

  • Flanner M, Shell K, Barlage M, Perovich D, Tschudi M (2011) Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat Geosci 4:151–155

    Article  CAS  Google Scholar 

  • Foster J, Sun C, Walker J, Kelly R, Chang A, Dong J et al (2005) Quantifying the uncertainty in passive microwave snow water equivalent observations. Remote Sens Environ 94:187–203

    Article  Google Scholar 

  • Frappart F, Ramillien G, Biancamaria S, Mognard N, Cazenave A (2006) Evolution of high-latitude snow mass derived from the GRACE gravimetry mission (2002–2004). Geophys Res Lett 33

    Google Scholar 

  • Frei A, Miller J, Robinson D (2003) Improved simulations of snow extent in the second phase of the Atmospheric Model Intercomparison Project (AMIP-2). J Geophys Res 108

    Google Scholar 

  • Grenfell T, Warren S (1999) Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J Geophys Res 104(D24):31697–31709

    Article  Google Scholar 

  • Grippa M, Mognard N, Le Toan T (2005) Comparison between the interannual variability of snow parameters derived from SSM/I and the Ob river discharge. Remote Sens Environ 98:35–44

    Article  Google Scholar 

  • Hall D, Riggs G (2007) Accuracy assessment of the MODIS snow products. Hydrol Proc 21:1534–1547

    Article  Google Scholar 

  • Hall DK, Sturm M, Benson C, Chang AT, Foster JL, Garbeil H et al (1991) Passive microwave remote and in situ measurements of arctic [sic] and subarctic snow covers in Alaska. Remote Sens Environ 38(3):161–172

    Article  Google Scholar 

  • Hallikainen M (1989) Microwave radiometry of snow. Adv Space Res 9(1):267–275

    Article  Google Scholar 

  • Hancock S, Baxter R, Evans J, Huntley B (2013) Evaluating global snow water equivalent products for testing land surface models. Remote Sens Environ 128:107–117

    Article  Google Scholar 

  • Haran T (2003) CLPX-Satellite: MODIS radiances, reflectances, snow cover and related grids. MOD10A2. Boulder, Colorado USA: NSIDC: National Snow and Ice Data Center

    Google Scholar 

  • Khan V, Holko L (2009) Snow cover characteristics in the Aral Sea Basin from different data sources and their relation with river runoff. J Marine Syst 76:254–262

    Article  Google Scholar 

  • Kitaev L, Kislov A, Krenke A, Razuzaev V, Martuganov R, Konstantinov I (2002) The snow cover characteristics of northern Eurasia and their relationship to climatic parameters. Boreal Environ Res 7:437–445

    Google Scholar 

  • Koskinen J, Pulliainen J, Hallikainen M (1997) The use of ERS-1 SAR data in snow melt monitoring. IEEE Trans Geosci and Remote Sens 35:601–610

    Article  Google Scholar 

  • Lemmetyinen J, Pulliainen J, Rees A, Kontu A, Qiu Y, Derksen C (2010) Multiple-layer adaption of HUT snow emission model: comparison with experimental data. IEEE Trans Geosci Remote Sens 48:2781–2794

    Article  Google Scholar 

  • Liu G (2004) Approximation of single scattering properties of ice and snow particles for high microwave frequencies. J Atmospheric Sci 61:2441–2456

    Article  Google Scholar 

  • Macke A, Mueller J, Raschke E (1996) Single scattering properties of atmospheric ice crystals. J Atmospheric Sci 53(19):2813–2825

    Article  Google Scholar 

  • Mätzler C (2000) A simple snowpack/cloud reflectance and transmittance model from microwave to ultraviolet: the ice-lamella pack. J Glaciol 46(152):20–24

    Article  Google Scholar 

  • Mätzler C (2002) Relation between grain-size and correlation length of snow. J Glaciol 48:166–461

    Article  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330(3):377–445

    Article  Google Scholar 

  • Nilsson A (2003) Qscat CLPX data. //ftp.nohrsc.nws.gov/staff/nilsson/qscat/. Accessed 15 April 2013

    Google Scholar 

  • Niu G-Y, et al. (2007). Retrieving snow mass from GRACE terrestrial water storage change with a land surface model. Geophys Res Lett 34

    Google Scholar 

  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H et al (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85(3):369–432

    Article  Google Scholar 

  • Painter T, Bryant A, Skiles S (2012). Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys Res Lett 39

    Article  Google Scholar 

  • Picard G, Brucker L, Fily M, Gallée H, Krinner G (2009) Modeling time series of microwave brightness temperature in Antarctica. J Glaciol 55(191):537–551

    Article  Google Scholar 

  • Pulliainen J (2006) Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sens Environ 101:257–269

    Article  Google Scholar 

  • Pulliainen J, Grandell J, Hallikainen M (1999) HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans Geosci Rem Sens 37(3):1378–1390

    Article  Google Scholar 

  • Ramsay B (1998) The interactive multisensor snow and ice mapping system. Hydrol Process 12:1537–1546

    Article  Google Scholar 

  • Rawlins M, Fanestock M, Frolking S, Vörösmarty CJ (2007) On the evaluation of snow water equivalent estimates over the terrestrial Arctic drainage basin. Hydrol Process 21(12):1616–1623

    Article  Google Scholar 

  • Rawlins M, Steele M, Holland M, Adam J, Cherry J, Francis J et al (2010) Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J Clim 23:5715–5737

    Article  Google Scholar 

  • Rienecker M, Suarez M, Gelaro R, Todling R, Bacmeister J, Liu E et al (2010) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648

    Article  Google Scholar 

  • Rittger K, Painter T, Dozier J (2013) Assessment of methods for mapping snow cover from MODIS. Adv in Water Resour 51:367–380

    Article  Google Scholar 

  • Roesch A (2006) Evaluation of surface albedo and snow cover in AR4 coupled climate models. J Geophys Res 111

    Google Scholar 

  • Saha S, Moorthi S, Pan H-L, Wang J, Nadiga S, Tripp P et al (2010) The NCEP climate forecast system reanalysis. Bull Amer Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Salzmann N, Mearns L (2012) Assessing the performance of multiple regional climate model simulations for seasonal mountain snow in the upper Colorado River Basin. J Hydrometeorol 13:539–556

    Article  Google Scholar 

  • Skiles S, Painter T, Deems J, Bryant A, Landry C (2012) Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates, Water Resour Res 48

    Google Scholar 

  • Smith C, Guttman L (1953) Measurement of internal boundaries in three-dimensional structures by random sectioning. Trans AIME 5:81–87

    Google Scholar 

  • Sun C, Walker J, Houser P (2004) A methodology for snow data assimilation in a land surface model. J Geophys Res 109:D08108

    Google Scholar 

  • Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen J, Kärnä J-P et al (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens of Environ 115:3517–3529

    Article  Google Scholar 

  • Tedesco M, Pulliainen J, Takala M, Hallikainen M, Pampaloni P (2004a) Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens of Environ 90:76–85

    Article  Google Scholar 

  • Tedesco M, Kelly R, Foster J, Chang A (2004b) AMSR-E/Aqua daily L3 global snow water equivalent EASE-Grids V002. updated daily. Boulder, Colorado USA: National Snow and Ice Data Center. URL http://nsidc.org/data/ae_dysno

  • Teschl E, Randeu W, Teschl R (2010) Microwave scattering from ice crystals: how much parameters can differ from equal volume spheres. Adv in Geosci 25:127–133

    Article  Google Scholar 

  • Toure A, Goita K, Royer A, Kim E, Durand M, Margulis S et al (2011) A case study of using a multilayered thermodynamical snow model for radiance assimilation. IEEE Trans on Geosci and Remote Sens 49(8):2828–2837

    Article  Google Scholar 

  • Uppala S, Kållberg P, Simmons A, Andrae U, Da Costa Bechtold V, Fiorino M et al (2005) The ERA-40 re-analysis. Q J of the Royal Meteorol Soc 131(612):2961–3012

    Article  Google Scholar 

  • Wiesmann A, Mätzler C (1999) Microwave emission model of layered snowpacks. Remote Sens of Environ 70(3):307–316

    Article  Google Scholar 

  • Wiesmann A, Fierz C, Mätzler C (2000) Simulation of microwave emission from physically modeled snowpacks. Ann of Glaciol 31(1):397–405

    Article  Google Scholar 

  • Yang D, Zhao Y, Armstrong R, Robinson D, Brodzik, M-J (2007). Streamflow response to seasonal snow cover mass changes over large Siberian watersheds. J Geophys Res Earth Surf 112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Richardson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Richardson, M., Davenport, I., Gurney, R. (2013). Global Snow Mass Measurements and the Effect of Stratigraphic Detail on Inversion of Microwave Brightness Temperatures. In: Bengtsson, L., et al. The Earth's Hydrological Cycle. Space Sciences Series of ISSI, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8789-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8789-5_14

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8788-8

  • Online ISBN: 978-94-017-8789-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics