Skip to main content

Implantable Chronic Tibial Nerve Modulation (CTNM)

  • Chapter
  • First Online:
Neurourology

Abstract

Peripheral neuromodulation is derived from techniques used in traditional Chinese medicine, better known as acupuncture. The earliest writings about “stone needles” (called Pien in Chinese) date from about 500 BC. Puncturing specific points was believed to restore “the energetic harmony” of the body [1]. In 1683, Willem ten Rhijine discovered this Eastern traditional way of medicine and published a book entitled Dissertatio de Arthritide: Mantissa Schematica: De Acupunctura: Et Orationes tres [2]. He was the first Western physician to describe the technique he called “acupunctura,” where needles were used to treat a variety of diseases. One of the most common acupuncture points is the San-Yin-Jiao point or Spleen 6 (SP-6) located on the medial side of the lower leg, about 4 finger breadths cephalad to the medial malleolus. The location of SP-6 and the organs affected by its stimulation have remarkable similarities with current posterior tibia nerve stimulation (PTNS). In combination with the applied ground patch, an electrical current is applied to the acupuncture needle, which transforms into an electrical form of acupuncture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stux G. General standards in acupuncture treatment of chronic pain. Schmerz. 1997;11(2):126–7.

    Article  CAS  Google Scholar 

  2. ten Rhijine W. Dissertatio de Arthritide: Mantissa Schematica: De Acupunctura: Et Orationes tres. Londini: Impensis R. Chiswell; 1683. p. 334.

    Google Scholar 

  3. McGuire EJ, Zhang SC, Horwinski ER, Lytton B. Treatment of motor and sensory detrusor instability by electrical stimulation. J Urol. 1983;129(1):78–9.

    Article  CAS  Google Scholar 

  4. Stoller ML, Copeland S, Millard RJ, Murnaghan GF. The efficacy of acupuncture in reversing the unstable bladder in pig-tailed monkeys. J Urol. 1987;137(4):A104.

    Google Scholar 

  5. Cooperberg MR, Stoller ML. Percutaneous neuromodulation. Urol Clin N Am. 2005;32:71–8.

    Article  Google Scholar 

  6. Chancellor MB, Chartier-Kastler EJ. Principles of sacral nerve stimulation (SNS) for the treatment of bladder and urethral sphincter dysfunctions. Neuromodulation. 2000;3(1):16–26.

    Article  CAS  Google Scholar 

  7. Sillen U, Hjälmås K. Bladder function in preterm and full-term infants—free voidings during four-hour voiding observation. Scand J Urol Nephrol Suppl. 2004;215:63–8.

    Article  Google Scholar 

  8. Yeung CK, Godley ML, Ho CK, Ransley PG, Duffy PG, Chen CN, et al. Some new insights into bladder function in infancy. Br J Urol. 1995;76(2):235–40.

    Article  CAS  Google Scholar 

  9. Zotter H, Sauseng W, Kutschera J, Mueller W, Kerbl R. Bladder voiding in sleeping infants is consistently accompanied by a cortical arousal. J Sleep Res. 2006;15(1):75–9.

    Article  Google Scholar 

  10. Kabay SC, Kabay S, Yucel M, Ozden H. Acute urodynamic effects of percutaneous posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with Parkinson’s disease. Neurourol Urodyn. 2009;28:62–7.

    Article  Google Scholar 

  11. Kabay SC, Yucel M, Kabay S. Acute effect of posterior tibial nerve stimulation on neurogenic detrusor overactivity in patients with multiple sclerosis: urodynamic study. Urology. 2008;71:641–5.

    Article  Google Scholar 

  12. Gobbi C, Digesu GA, Khullar V, El Neil S, Caccia G, Zecca C. Percutaneous posterior tibial nerve stimulation as an effective treatment of refractory lower urinary tract symptoms in patients with multiple sclerosis: preliminary data from a multicentre, prospective, open label trial. Mult Scler. 2011;17:1514–9.

    Article  CAS  Google Scholar 

  13. Andrews BJR, Reynard JM. Transcutaneous posterior tibial nerve stimulation for treatment of detrusor hyperreflexia in spinal cord injury. J Urol. 2003;170:926.

    Article  CAS  Google Scholar 

  14. Govier FE, Litwiller S, Nitti V, Kreder KJ Jr, Rosenblatt P. Percutaneous afferent neuromodulation for the refractory overactive bladder: results of a multicenter study. J Urol. 2001;165:1193–8.

    Article  CAS  Google Scholar 

  15. van Balken MR, Vergunst H, Bemelmans BLH. Prognostic factors for successful percutaneous tibial nerve stimulation. Eur Urol. 2006;49:360–5.

    Article  Google Scholar 

  16. Kabay S, Kabay SC, Yucel M, Ozden H, Yilmaz Z, Aras O, et al. The clinical and urodynamic results of a 3 month percutaneous posterior tibial nerve stimulation treatment in patients with multiple sclerosis-related neurogenic bladder dysfunction. Neurourol Urodyn. 2009;28:964–8.

    Article  Google Scholar 

  17. de Seze M, Raibaut P, Gallien P, Even-Schneider A, Denys P, Bonniaud V, et al. Transcutaneous posterior tibial nerve stimulation for treatment of the overactive bladder syndrome in multiple sclerosis: results of a multicenter prospective study. Neurourol Urodyn. 2011;30:306–11.

    Article  Google Scholar 

  18. Danisman A, Kutlu O, Akkaya E, et al. Tibial nerve stimulation diminishes mast cell infiltration in the bladder wall induced by interstitial cystitis urine. Scand J Urol Nephrol. 2007;41:98–102.

    Article  Google Scholar 

  19. Chang CJ, Huang ST, Hsu K, Stoller ML, Lue TF. Electroacupuncture decreases c-fos expression in the spinal cord induced by noxious stimulation of the rat bladder. J Urol. 1998;160:2274–9.

    Google Scholar 

  20. Finazzi-Agrò E, Rocchi C, Pachatz C, et al. Percutaneous tibial nerve stimulation produces effects on brain activity: study on the modifications of the long latency somatosensory evoked potentials. Neurourol Urodyn. 2009;28:320–4.

    Article  Google Scholar 

  21. Zhang F, Zhao S, Shen B, et al. Neural pathways involved in sacral neuromodulation of reflex bladder activity in cats. Am J Physiol Renal Physiol. 2013;304:710–7.

    Article  Google Scholar 

  22. Hotta H, et al. Age-related changes in neuromodulatory control of bladder micturition contractions originating in the skin. Front Neurosci. 2018;12:117.

    Article  Google Scholar 

  23. Moya P, Parra P, Arroyo A, et al. Sacral nerve stimulation versus percutaneous posterior tibial nerve stimulation in the treatment of severe fecal incontinence in men. Tech Coloproctol. 2016;20(5):317–9.

    Article  CAS  Google Scholar 

  24. Martinson M, MacDiarmid S, Black E. Cost of neuromodulation therapies for overactive bladder: percutaneous tibial nerve stimulation versus sacral nerve stimulation. J Urol. 2013;189(1):210–6.

    Article  Google Scholar 

  25. Ahyai SA, et al. Meta-analysis of functional outcomes and complications following transurethral procedures for lower urinary tract symptoms resulting from benign prostatic enlargement. Eur Urol. 2010;58(3):384–97.

    Article  Google Scholar 

  26. Deer T, et al. Prospective, multicenter, randomized, double-blinded, partial crossover study to assess the safety and efficacy of the novel neuromodulation system in the treatment of patients with chronic pain of peripheral nerve origin. Neuromodulation. 2016;19(1):91–100.

    Article  Google Scholar 

  27. Heesakkers J, van Breda H, Van Kerrebroeck P, Digesu A, Elneil S. Safety and performance of a wireless implantable tibial nerve stimulator device for the treatment of patients with overactive bladder. Neurourol Urodyn. 2016;35(S4):S45–6.

    Google Scholar 

  28. https://abstracts.mirrorsmed.org/abstracts/tibial-neuromodulation-novel-chronic-impantable-device-achieves-urinary-continence-initial

  29. https://www.jurology.com/article/S0022-5347(17)34414-2/abstract

  30. https://www.meddeviceonline.com/doc/stimguard-receives-fda-ide-approval-to-launch-a-u-s-clinical-trial-for-a-revolutionary-wireless-device-to-alleviate-oab-symptoms-0001; https://www.mpo-mag.com/contents/view_breaking-news/2016-12-20/stimguard-enrolls-first-patient-in-office-based-chronic-tibial-nerve-oab-study

  31. Kessler TM, Knuepfer S, De Wachter S, Kozomara M, Sievert K. Tibial neuromodulation: novel chronic implantable device achieves urinary continence in initial cases. Neurourol Urodynam. 2015;34(S3):S380 (abstract: 474). Abstract Montreal 2015.

    Google Scholar 

  32. Guzman-Negron J, Goldman HB. New devices and technologies for the management of overactive bladder. Curr Urol Rep. 2017;18:94.

    Article  Google Scholar 

  33. van Breda HMK, et al. A new implanted posterior tibial nerve stimulator for the treatment of overactive bladder syndrome: 3-month results of a novel therapy at a single center. J Urol. 2017;198(1):205–10.

    Article  Google Scholar 

  34. de Wall LL, Heesakkers JP. Effectiveness of percutaneous tibial nerve stimulation in the treatment of overactive bladder syndrome. Res Rep Urol. 2017;9:145–57.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Dietrich Sievert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sievert, KD. (2019). Implantable Chronic Tibial Nerve Modulation (CTNM). In: Liao, L., Madersbacher, H. (eds) Neurourology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7509-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7509-0_39

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7507-6

  • Online ISBN: 978-94-017-7509-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics