Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 304))

Abstract

The sedimentary record of orbitally-forced variations in climate has the potential to provide high-resolution dating to levels of a few hundred thousand years of less. Easily-measured, bed-to-bed variations in various components give the basic data for defining these rhythms. The Cretaceous is a particularly appropriate period for testing both the validity and the application of cyclostratigraphy.

Recommended specific short range objectives are: detailed comparative studies of time slices, in order to recognize the effect of orbital influences in different sedimentary environments, and to map the paleogeographic distributions of obliquity-dominated patterns versus precession-eccentricity dominated ones. This approach should illuminate Cretaceous climates and oceanography, and the pathways along which sedimentary systems were forced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, M.H., Krueger, S.W. Sadler, P.M. (1987) A new look at sedimentation

    Google Scholar 

  • rates and the completeness of the stratigraphic record. J. Geol. 95, 1–14.

    Google Scholar 

  • Anderson, R.Y (1982) A long geoclimatic record from the Permian. J. Geophys. Res. 87, 7285–729.

    Google Scholar 

  • Anderson, R.Y (1984) Orbital forcing of evaporite sedimentation. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate Pt. 1. Reidel, 147–162.

    Google Scholar 

  • Anderson, R.Y (1986) The varve microcosm; propagator of cyclic bedding. Paleoceanography 1, 373–382.

    Article  Google Scholar 

  • Barron, E.J., Arthur, M.A. Kauffman, E.G. (1985) Cretaceous rhythmic bedding sequences: a plausible link between orbital variations and climate. Earth Plan. Sci. Lett. 72, 327–340.

    Google Scholar 

  • Bathurst, R.G.C. (1987) Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction. Sedimentology 34, 749–778.

    Article  Google Scholar 

  • Berger, A. (1976) Obliquity and precession for the last 5 000 000 years. Astron. Astrophys. 51, 127–135.

    Google Scholar 

  • Berger, A. (1977a) Support of the astronomical theory of climatic change. Nature 268, 44–45.

    Article  Google Scholar 

  • Berger, A. (1977b) Long term variations of the Earth’s orbital elements. Celestial Mechanics 15, 53–74.

    Article  Google Scholar 

  • Berger, A. (1978a) Long-term variations of daily insolation and Quaternary climatic changes. J. Atm. Sci. 35, 2362–2367.

    Google Scholar 

  • Berger, A. (1978b) Long-term variations of caloric insolation resulting from the earth’s orbital elements. Quat. Res. 9, 139–167.

    Google Scholar 

  • Berger, A. (1980) Milankovitch astronomical theory of paleoclimates, a modern review. Vistas in Astronomy 24, 103–122.

    Article  Google Scholar 

  • Berger, A. (1984) Accuracy and frequencies stability of the Earth’s orbital elements during the Quaternary. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate Pt. 1. Reidel, 3–39.

    Chapter  Google Scholar 

  • Berger, A. (1987) Pleistocene climatic variability at astronomical frequencies. In: Faure, H. Rutter, N. (Eds.) INQUA Symposium on Global Change. (in press)

    Google Scholar 

  • Berger, A.L. (1988) Milankovitch theory and climate. Rev. Geophys. (in press).

    Google Scholar 

  • Berger, A., Gall’ee, H., Fichefet, T., Marsiat, I. Tricot, Ch. (1988a) Testing the astronomical theory with a physical coupled climate ice sheet model. Scientific Report 1988/3, Inst. d’Astronomie et de G’eophys. Louvain-la-Neuve.

    Google Scholar 

  • Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) (1984) Milan kovitch and Climate. Reidel.

    Google Scholar 

  • Berger, A. Loutre, M.F. (1987) Origine des fr’equences des ‘el’ements astro nomiques intervenant dans le calcul de l’insolation. Scientific Report 1987/13, Inst. d’Astronomie et de G’eophys. Louvain-la-Neuve.

    Google Scholar 

  • Berger, A., Loutre, M.F. Dehant, V. (1987) Influence of the variation of the lunar orbit on the astronomical frequencies of the Pre-Quaternary paleo-insolation. Scientific Report 1987/15, Inst. d’Astronomie et de G’eophys. Louvain-la-Neuve.

    Google Scholar 

  • Berger, A., Loutre, M.F. Laskar, J. (1988b) A new astronomical solution for the climate of the last 10 Myr. Inst. d’Astronomie et de G’eophys. Louvain-la-Neuve. in prep.

    Google Scholar 

  • Berger, A. Pestiaux, P. (1984) Accuracy and stability of the Quaternary terrestrial insolation. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate Pt. 1. Reidel, 83–112.

    Chapter  Google Scholar 

  • Bernard, E.A. (1975) Les bases energetiques de la paleoclimatologie theoretique et evolution des climates. Ciel et Terre 91, 161–219.

    Google Scholar 

  • Bottjer, D.J., Arthur, M.A., Dean, W.E., Hattin, D.E. Savrda, C.E. (1986) Rhythmic bedding in Cretaceous pelagic carbonate environments: sensitive recorder of climatic cycles. Paleoceanography 1, 467–481.

    Article  Google Scholar 

  • Bradley, W.H. (1929) The varves and climate of the Green River epoch. U.S. Geol. Surv. Prof. Pap. 158-E, 87–110.

    Google Scholar 

  • Bramlette, M.N. (1946) The Monterey Formation of California and the origin of its siliceous rocks. U.S. Geol. Surv. Prof. Pap. 212, 55 pp.

    Google Scholar 

  • Clifton, H.E. (1981) Progradational sequences in Miocene shoreline deposits, SE Caliente Range, California. J. Sedim. Petrol. 51, 165–184.

    Google Scholar 

  • Cotillon, P. (1984) Tentative world-wide correlation of early Cretaceous strata by limestone-marl cyclicities in pelagic deposits. Bull. Geol. Soc. Denmark 33, 91–102.

    Google Scholar 

  • Cotillon, P. (1987) Bed-scale cyclicity of pelagic Cretaceous successions as a result of world-wide control. Marine Geol. 78, 109–123.

    Article  Google Scholar 

  • Cotillon, P. Rio, M. (1984) Cyclic sedimentation in the Cretaceous of Deep Sea Drilling Sites 535 and 540 (Gulf of Mexico), 534 (central Atlantic) and in the Vocontian Basin (France). Init. Rep. DSDP 77, 339–376.

    Google Scholar 

  • Darmedru, C. (1984) Variation au taux de sedimentation et oscillations climatiques lors du depots des alternances marnes-calcaires pelagiques. Examples du Valangien sup’erieur (SE de la France). Bull. Soc. Geol. France 26, 63–70.

    Google Scholar 

  • Darmedru, C., Cotillon, P. Rio, M. (1982) Rythmes climatiques et biologiques en milieu marin p’elagique. Leurs relations dans les d’ep“ots cr’etac’es alternants du bassin vocontien (Sud-Est de la France). Bull. Soc. g’eol. France 24, 627–640.

    Google Scholar 

  • De Boer, P.L. (1982) Cyclicity and the storage of organic matter in Middle Cretaceous pelagic sediments. In: Einsele, G. Seilacher, A. Cyclic and event stratification. Springer. 456–475.

    Google Scholar 

  • De Boer, P.L. (1983) Aspects of Middle Cretaceous pelagic sedimentation in S. Europe. Geol. Ultraiectina 31, 112 p.

    Google Scholar 

  • De Boer, P.L. (1986) Changes in the organic carbon burial during the Early Cretaceous. In: Summerhayes, C.P. Shakleton, N.J. (Eds.) North Atlantic Palaeoceanography. Geol. Soc. Lond. Spec. Publ. 21, 321–331.

    Google Scholar 

  • De Boer, P.L. Wonders, A.A.H. (1981) Milankovitch parameters and bedding rhythms in Umbrian Middle Cretaceous pelagic sediments. I.A.S. 2nd Eur. Meeting, Bologna. Abstr., 10–13.

    Google Scholar 

  • De Boer, P.L. Wonders, A.A.H. (1984) Astronomically induced rhythmic bedding in Cretaceous pelagic sediments near Moria (Italy). In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel. 177–190.

    Google Scholar 

  • Dean, W.E. Gardner, J.V. (1986)Milankovitch cycles in Neogene deep-sea sediment. Paleoceanography 1, 539–553.

    Google Scholar 

  • Dean, W.E., Gardner, J.V. Jansa, L.F. (1978) Cyclic sedimentation along the continental margin of Northwest Africa. in: Lancelot, Y., Seibold, E. et al. (1977) Initial Reports of the Deep Drilling Project, Vol. 41: Wash. (U.S. Governm. Printing Office ), 965–989.

    Google Scholar 

  • Dean, W.E., Gardner, J.V. Cepek, P. (1981) Tertiary carbonate-dissolution cycles on the Sierra Leone Rise, Eastern Equatorial Atlantic Ocean. Marine Geol. 39, 81–101.

    Google Scholar 

  • Denis, C. (1986) On the change of kinetical parameters on the Earth during geological times. Geophys. J.R. astr. Soc. 87, 559–568.

    Google Scholar 

  • Deprit, A., Bretagnon, P. Berger, A. (1984) Orbital elements and insolation. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel. 823–826.

    Chapter  Google Scholar 

  • Einsele, G. (1982) Limestone-marl cycles (periodites): diagnosis, significance, causes–a review. in: Einsele, G. Seilacher, A. Eds. ( 1982 ) Cyclic and event stratification. Springer (Berlin), 8–53.

    Google Scholar 

  • Emiliani, C. (1955) Pleistocene temperatures. J. Geol. 63, 538–578.

    Article  Google Scholar 

  • Erba, E. (1986) I nannofossil calcarei nel’ Aptiano-Albiano (Cretacio inferiore): Biostratigrafia paleoceanografia e diagenesi degli Scisti a Fucoidi del pozzo Piobbico (Marche). Ph.D. Diss. Univ. Milano. 313 pp.

    Google Scholar 

  • Ferry, S. Rubino, J.-L. (1987) La modulation du signal orbital dans les sediments pelagiques. C.R. Acad. Sci. Paris t. 305, ser. II, 477–482.

    Google Scholar 

  • Fischer, A.G. (1964) The Lofer Cyclothems of the Alpine Triassic. Kansas Geol. Survey Bull. 169, 107–149.

    Google Scholar 

  • Fischer, A.G. (1980) Gilbert - Bedding rhythms and geochronology. G.S.A. Spec. Pap. 183, 93–104.

    Google Scholar 

  • Fischer, A.G. (1981) Climatic oscillations in the biosphere. in: biotic crises in ecological and evolutionary time. Acad. Press, 103–131.

    Google Scholar 

  • Fischer, A.G. (1986) Climatic rhythms recorded in strata. Ann. Rev. Earth Plan. Sci. 14, 351–376.

    Google Scholar 

  • Fischer, A.G. Schwarzacher, W. 1984 Cretaceous bedding rhythms under orbital control? In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel, 163–175.

    Google Scholar 

  • Gilbert, G.K. (1895) Sedimentary measurement of Cretaceous time. J. Geol. 3, 121 127.

    Google Scholar 

  • Goldhammer, R.K, Dunn, D.A. Hardie, L.A. (1987) High-frequency glacio-eustatic sealevel oscillations with Milankovitch characteristics recorded in Middle Triassic platform carbonates in Northern Italy. Am. J. Sci. 287, 853–892.

    Google Scholar 

  • Hallam, A. (1986) Origin of minor limestone-shale cycles: climatically induced or diagenetic? Geology 14, 609–612.

    Article  Google Scholar 

  • Hallam, A., Hancock, J.M., LaBreque, J.L., Lowrie, W. Channel, J. (1985) Jurassic and Cretaceous geochronology and Jurassic to Paleogene magnetostratigraphy. Mem. Geol. Soc. Lond. 10, 118–140.

    Google Scholar 

  • Hardie, L.A., Bosellini, A. Goldhammer, R.K (1986) Repeated subaerial exposure of subtidal carbonate platforms, Triassic, Northern Italy: evidence for high frequency sea level oscillations on a 104 year time scale. Paleoceanogr. 1, 447–457.

    Article  Google Scholar 

  • Harland, W.B., Cox, A.V., Llewellyn, P.G., Pickton, C.A.G., Smith, A.G. Walters, R. (1982) A geologic time scale. Cambridge Univ. Press. 131 pp.

    Google Scholar 

  • Hart, M.B. (1987) Orbitally induced cycles in the chalk facies of the United Kingdom. Cret. Res. 8, 335–348.

    Google Scholar 

  • Hattin, D.E. (1986) Interregional model for deposition of Upper Cretaceous pelagic rhythmites, U.S. Western Interior. Paleoceanography 1, 483–494.

    Google Scholar 

  • Hays, J.D., Imbrie, J. Shackleton, N.J. (1976) Variations in the Earth’s orbit: pacemaker of the Ice ages. Science 194, 1121–1132.

    Article  Google Scholar 

  • Heckel, P.H. (1977) Black shale in Pennsylvania cyclothems. Am. Assoc. Petrol. Geol. Bull. 61, 1045–1068.

    Google Scholar 

  • Herbert, T.D. Fischer, A.G. (1986) Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature 321, 739–743.

    Article  Google Scholar 

  • Herbert, T.D., Stallard, R.F. Fischer, A.G. (1986) Anoxic events, productivity rhythms, and the orbital signature in a mid-Cretaceous deep-sea sequence from central Italy. Paleoceanography 1, 495–506.

    Article  Google Scholar 

  • Hilgen, F.J. Langereis, C.G. (1989) Sedimentary cycles in the Mediterranean Pliocene: discrepancies with the quasi-periods of the Earth’s orbital cycles? Terra Abstracts 1, p. 241

    Google Scholar 

  • House, M.R. (1985) A new approach to an absolute time scale from measurements of orbital cycles and sedimentary micro-rhythms. Nature 315, 721–725.

    Article  Google Scholar 

  • Imbrie, J. Imbrie, J.Z. (1980) Modelling the climatic response to the orbital variations. Science 207, 943–953.

    Article  Google Scholar 

  • Imbrie, J. Imbrie, K.P. (1979) Ice ages: solving the mystery. Enslow Publ. Short Hills, N.J.

    Google Scholar 

  • Imbrie, J., Hays, J., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L. Shackleton, N.J. (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine d-180 record. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel. 269–305.

    Google Scholar 

  • Kauffman, E.G. (1988) Concepts and methods of high-resolution event stratigraphy. Ann. Rev. Earth Planet. Sci. 16, 605–654.

    Google Scholar 

  • Kemper, E. (1987) Das Klima der Kreide-Zeit. Geol. Jb. A96, 5–185.

    Google Scholar 

  • Kennedy, W.J. Odin, G.S. (1982) The Jurassic and Cretaceous time scale in 1981. In: (Odin, G.S. (Ed.) Numerical dating in stratigraphy. J. Wiley. 557–592.

    Google Scholar 

  • Kutzbach, J.E. Otto-Bliesner, B.L. (1982) The sensitivity of the African- Asian monsoonal climate to orbital parameter changes for 9000 years b.p. in a low-resolution general circulation model. J. Atm. Sci. 39, 1177–1188.

    Google Scholar 

  • Laferriere, A.P., Hattin, D.E. Archer, A.W. (1987) Effects of climate, tectonics and sea-level changes on rhythmic bedding patterns in the Niobrara Formation ( Upper Cretaceous ), U.S. Western Interior. Geology 15, 233–236.

    Google Scholar 

  • Milankovitch, M. (1941) Kanon der Erdbestrahlung and seine Anwendung auf das Eiszeitenproblem. Akad. Royale Serbe 133, 633 pp.

    Google Scholar 

  • Mörner, N.A. (1981) Revolution in Cretaceous sea-level analysis. Geology 9, 344–346.

    Article  Google Scholar 

  • Napoleone, G. Ripepe, M. Cyclic geomagnetic changes in the Mid Cretaceous black shale rhythms, Central Italy. (in prep.).

    Google Scholar 

  • Oerlemans, J. (1980) Model experiments on the 100,000 yr glacial cycle. Nature 287, 430–432.

    Article  Google Scholar 

  • Olsen, P.E. (1984) Periodicity of lake level cycles in the Late Triassic Lockatong Formation of the Newark Basin (Newark Supergroup, New Jersey and Pennsylvania. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel. 129–146.

    Google Scholar 

  • Olson, P.E. (1986) A 40-million year lake record of Early Mesozoic orbital forcing. Science 234, 842–848.

    Article  Google Scholar 

  • Park, J. Herbert, T.D. (1987) Hunting for paleoclimatic periodicities in a geologic time series with an uncertain time scale. J. Geophys. Res. 92, B13, 14,027 - WU

    Google Scholar 

  • Pestiaux, P. Berger, A. (1984) An optimal approach to the spectral characteristics of deep-sea climatic records. In: Berger, A.L., Imbrie, J., Hays, J., Kukla, G. Salzman, B. (Eds.) Milankovitch and Climate. Pt. 1. Reidel. 417–445.

    Google Scholar 

  • Pratt, L.M., Arthur, M.A., Dean, W.A. Scholle, P.A. Paleoceanographic cycles and events during the late Cretaceous in the Western Interior Seaway of North America. In: Caldwell, W.G.E. Kauffman, E.G. (Eds.) Evolution of Western Interior Basin. Geol. Assoc. Canada (in press)

    Google Scholar 

  • Prell, W.L. Kutzbach, J.E. (1987) Monsoon variability over the past 150,000 years. J. Geoph. Res. 92, D7, 8411–8425.

    Article  Google Scholar 

  • Premoli Silva, I., Erba, E. Tornaghi, M.E. (1989) Paleoenvironmental signals and changes in surface fertility in Mid Cretaceous C org-rich pelagic facies of the Fucoid Marls (Central Italy). (in press)

    Google Scholar 

  • Ricken, W. (1985) Epicontinental marl-limestone alternations: Event deposition and diagenetic bedding (U. Jurassic, SW Germany). In: Bayer, U. Seilacher, A. (Eds.) Sedimentary and evolutionary cycles. Lecture notes in Earth Sciences 1, 127–162.

    Google Scholar 

  • Ricken, W. (1986) Diagenetic bedding: a model for marl-limestone alternations. Lecture Notes in Earth Sci. 6. Springer. 210 pp.

    Google Scholar 

  • Ricken, W. (1987) The carbonate compaction law: a new tool. Sedimentology 34, 571–584.

    Article  Google Scholar 

  • Ripepe, M. (1988) StrataBase: a stratigraphical and processing program for microcomputers. Computers Geosci. 14, 369–375.

    Article  Google Scholar 

  • ROCC Group (1986) Rhythmic bedding in Upper Cretaceous pelagic carbonate sequences: varying response to orbital forcing. Geology 14, 153–156.

    Google Scholar 

  • Rossignol-Strick, M. (1983) African monsoons, an immediate climate response to orbital insolation. Nature 303, 46–49.

    Article  Google Scholar 

  • Roth, P.H. (1978) Cretaceous nannoplankton biostratigraphy of the Northwestern Atlantic Ocean. Init. Rep. D.S.D.P. 44, 731–759.

    Google Scholar 

  • Roth P.H. (1986) Mesozoic palaeoceanography of the North Atlantic and Tethys Oceans. In: Summerhayes, C.P. Shakleton, N.J. (Eds.) North Atlantic Palaeoceanography. Geol. Soc. Lond. Spec. Publ. 21, 299–320.

    Google Scholar 

  • Sadler, P.M. (1981) Sediment accumulation rates and the completeness of the stratigraphic record. J. Geol. 89, 569–584.

    Article  Google Scholar 

  • Sander, B. (1936) Beitr“age zur Kenntnis der Ablagerungsgef’uge. Mineral. Petrogr. Mitt. 48, 27–139.

    Google Scholar 

  • Savrda, C.E. Bottjer, D.J. (1987) Trace fossil model for reconstruction of paleooxygenation in bottom waters. Geology 14, 3–6.

    Article  Google Scholar 

  • Schwarzacher, W. (1947) Uber die sedimentf’ase Rhytmik des Dachsteinkalkes von Lofer. Verh. Geol. Bundesanstalt 1947, H. 10–12, 175–188.

    Google Scholar 

  • Schwarzacher, W. (1954) Die Grossrhythmik des Dachsteinkalkes von Lofer. Tchermaks Mineral. Petrograph. Mitt. 4, 44–54.

    Google Scholar 

  • Schwarzacher, W. (1964) An application of statistical time-series analysis of a limestone-shale sequence. J. of Geol. 72, 195–213.

    Article  Google Scholar 

  • Schwarzacher, W. (1975) Sedimentation models and quantitative stratigraphy. Elsevier, 377 pp.

    Google Scholar 

  • Schwarzacher, W. (1987) The analysis and interpretation of stratification cycles. Paleoceanogr. 2, 79–95.

    Article  Google Scholar 

  • Schwarzacher, W. Fischer, A.G. (1982) Limestone-shale bedding and perturbations of the Earth’s orbit. in: Einsele, G. Seilacher, A. Eds. (1982) Cyclic and event stratification. Springer. 72–95.

    Chapter  Google Scholar 

  • Schwarzacher, W. Haas, J. (1966) Comparative statistical analysis of some Hungarian and Austrian Upper Triassic peritidal carbonate sequences. Acta Geol. Hungarica 29, 175–196.

    Google Scholar 

  • Shackleton, N.J. (1989) ODP Site 677: a case for revising the astronomical calibration

    Google Scholar 

  • for the Brunhes-Matuyama and Jaramillo Boundaries. Terra Abstracts 1, p. 185.

    Google Scholar 

  • Southam, J.R., Peterson, W.H. Brass, G.W. (1982) Dynamics of anoxia. Palaeogeogr. Palaeclim. Palaeoecol. 40, 183–198.

    Google Scholar 

  • Stoyko, A. (1970) La variation s’eculaire de la rotation de la Terre et les probl’emes conexes. Ann. Gu’ebhard (Neuchatel) 46, 293–316.

    Google Scholar 

  • Strasser, A. (1988) Shallowing-upward sequences in Purbeckian peritidal carbonates (lowermost Cretaceous, Swiss and French Jura Mountains ). Sedimentology 35, 369–383.

    Google Scholar 

  • Strasser, A., Mojon, P.-O. Deconinck, J.-F. (1988) Detailed sequence stratigraphy as a tool for correlation between Tethyan and boreal realm at the Jurassic-Cretaceous boundary. In: Swennen, R. (Ed.) Abstr. 9th IAS Reg. Meet. Leuven, Belgium.

    Google Scholar 

  • Sujkowski, Z.L. (1958) Diagenesis. Am. Assoc. Petr. Geol. Bull. 42, 2692–2717.

    Google Scholar 

  • Surdam, R.C. Stanley, KO. (1978) Lacustrine sedimentation during the culminating phase of Eocene Lake Gosiute, Wyoming (Green River Formation). Geol. Soc. Am. Bull. 90, 93–110.

    Google Scholar 

  • Thierstein, H.R. Roth, P.H. (1989) Oxygen and carbon isotopic fluctuations in cyclic Cretaceous deep-sea sediments: dominance of diagenetic effects. Marine Geol. (in press).

    Google Scholar 

  • Tornaghi, M.E. (1984) Analisi delle ciclicita deposizionali degli Scisti a Fucoidi (Aptiano-Albiano) nella successione del pozzo Piobico (Marche). MSc Thesis, Univ. Milano (Italy) 220 pp.

    Google Scholar 

  • Tornaghi, M.E., Premoli Silva, I. Ripepe, M. (1989) Planktonic foraminiferal distribution records productivity cycles:evidence from the Aptian-Albian of Central Italy. Riv. Ital. Paleont. Strat. (in press).

    Google Scholar 

  • Tribovillard, N.P. (1988) Controles de la s’edimentation marneuse en milieu p’elagique semi-anoxique. Th’ese Doct. Universit’ Lyon 1. 110 pp.

    Google Scholar 

  • VandenBerg, J., de Boer, P.L. Kreulen, R. (1983) Longterm secular variations of the magnetic field recorded in Late Albian pelagic sediments. Geol. Ultraiectina 31, 105–111.

    Google Scholar 

  • Van Houten, F.B. (1962) Cyclic sedimentation and the origin of analcim-rich upper Triassic Lockatong, west-central New Jersey and adjacent Pennsylvania. Am. J. Sci. 260, 561–576.

    Google Scholar 

  • Van Houten, F.B. (1964) Cyclic lacustrine sedimentation, Upper Triassic Lockatong Formation, Central New Jersey and adjacent Pennsylvania. Kansas Geol. Survey Bull. 169, 497–531.

    Google Scholar 

  • Van Tassel, J. (1987) Upper Devonian Catskill delta margin cyclic sedimentation: Brallier, Scherr and Foreknobs Formations of Virginia and West Virginia. Geol. Soc. Am. Bull. 99, 414–426.

    Google Scholar 

  • Walker, J.C.G. Zahnle, K.J. (1986) Lunar nodal tide and the distance to the Moon during the Precambrian. Nature 320, 600–602.

    Article  Google Scholar 

  • Weedon, G.P. (1986) Hemipelagic shelf sedimentation and climatic cycles: the basal Jurassic (Blue Lias) of South Britain. Earth Plan. Sci. Lett. 76, 321–335.

    Google Scholar 

  • Weedon, G.P. (1989) The detection and illustration of regular sedimentary cycles using Walsh power spectra and filtering, with examples from the Lias of Switzerland. J. Geol. Soc. London 146, 133–144.

    Google Scholar 

  • Wollin, G., Ericson, D.B., Ryan, W.B.F. Foster, J.H. (1971) Magnetism of the Earth and climatic changes. Earth Plan. Sci. Lett. 12, 175–183.

    Article  Google Scholar 

  • Wollin, G., Ryan, W.B.F. Ericson, D.B. (1978) Climatic changes, magnetic intensity variations and fluctuations of the eccentricity of the Earth’s orbit during the past 2,000,000 years and a mechanism which may be responsible for the relationship. Earth Plan. Sci. Lett. 41, 395–397.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fischer, A.G., Silva, I.P., de Boer, P.L. (1990). Cyclostratigraphy. In: Ginsburg, R.N., Beaudoin, B. (eds) Cretaceous Resources, Events and Rhythms. NATO ASI Series, vol 304. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-6861-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-6861-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6863-0

  • Online ISBN: 978-94-015-6861-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics