Skip to main content

Anti-inflammation in spontaneously arising animal cancers

  • Chapter
Inflammation: Mechanisms and Treatment

Part of the book series: Inflammation: Mechanisms and Treatment ((FTIN,volume 4))

  • 35 Accesses

Abstract

Animals bearing transplanted cancers have defective monocyte accumulation both in the primary tumour and at distant sites 1–5. Activated macrophages possess anti-tumour effector activity6–9. Consequently, an antiinflammatory effect which alters the ratio of macrophages to tumour cells may interfere with host resistance and contribute to progressive cancer growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein, I. D., Zbar, B. and Rapp, H.J. (1972). Impaired inflammatory response in tumor-bearing Guinea Pigs. J. Natl. Cancer Inst. 49, 1641

    PubMed  CAS  Google Scholar 

  2. Normann, S.J. and Sorkin, E. (1976). Cell-specific defect in monocyte function during tumor growth. J. Natl Cancer Inst., 57, 135

    Google Scholar 

  3. Normann, S.J. and Schardt, M. (1978). A cancer related macrophage dysfunction in inflamed tissues. J. Reticuloendothelial Soc., 24, 147

    CAS  Google Scholar 

  4. Normann, S.J. and Cornelius, J. (1978). Concurrent depression of tumor macrophage infiltration and systemic inflammation by progressive cancer growth. Cancer Res., 38, 3453

    PubMed  CAS  Google Scholar 

  5. Snyderman, R., Pike, M. C., Blaylock, B.L. et al. (1976). Effects of neoplasms on inflammation: depression of macrophage accumulation after tumor implantation. J. Immunol., 116, 585

    PubMed  CAS  Google Scholar 

  6. Stewart, C. C., Adles, C. and Hibbs, J. (1978). Cloned macrophages can be induced to kill tumor cells. J. Reticuloendothelial Soc., 24, 107

    CAS  Google Scholar 

  7. Hibbs, J. B. Jr. (1976). Role of activated macrophages in nonspecific resistance to neoplasia. J. Reticuloendothelial Soc, 20, 223

    Google Scholar 

  8. Hibbs, J. B. Jr., Taintor, R. R., Chapman, H. A. et al. (1977). Macrophage tumor killing: influence of the local environment. Science, 197,

    Google Scholar 

  9. Hibbs, J. B. Jr. (1976). The macrophage as a tumoricidal effector cell: Areview of in vivo and in vitro studies on the mechanism of the activated macrophage non-specific cytotoxic reaction. In Fink, Mary A. (ed.) The Macrophage in Neoplasia, p. 83. (New York: Academic Press)

    Google Scholar 

  10. Eccles, S.A., Bandlow, G. and Alexander, P. (1976). Monocytosis associated with the growth of transplanted syngeneic rat sarcomata differing in immunogenicity. Br. J. Cancer, 34, 20

    Article  PubMed  CAS  Google Scholar 

  11. Riley, V. (1968). Lactate dehydrogenase in the normal and malignant state in mice and the influence of a benign enzyme-elevating virus. InBush, H. (ed.) Methodsin Cancer Research, Vol. 4, pp.493–618. (New York: Academic Press)

    Google Scholar 

  12. Ryan, W. L. (1974). Erronous interpretation of valid experimental observations through interference by the LDH Virus. J. Natl. Cancer Inst., 52, 1673

    Google Scholar 

  13. Normann, S.J. and Schardt, M. (1978). A macrophage inflammation test using subcutaneous nitrocellulose filters. J. Reticuloendothelial Soc., 23, 153

    CAS  Google Scholar 

  14. Elder, J. H., Gautsch, J. W., Jensen, F. C. et al. (1977). Biochemical evidence that MCF murine leukemia viruses are envelope (env) gene recombinants. Proc. Natl. Acad. Sci. (USA), 74, 4676

    Article  CAS  Google Scholar 

  15. Rowe, W. P. and Piecus, T. (1972). Quantitative studies of naturally occuring murine leukemia virus infection of AKR mice. J. Exp. Med., 135, 429

    Article  PubMed  CAS  Google Scholar 

  16. Hartley, J. W., Wolford, N. K., Old, L.J. and Rowe, W. P. (1977). A new class of murine leukemia virus associated with development of spontaneous lymphomas. Proc. Natl. Acad. Sci. (USA), 74, 789

    Article  CAS  Google Scholar 

  17. Siegler, R. and Rich, M. A. (1963). Unilateral histogenesis of AKR thymic lymphoma. Cancer Res., 23, 1669

    PubMed  CAS  Google Scholar 

  18. McEndy, D. P., Boon, M. C. and Furth, J. (1944). On the role ofthymus, spleen, and gonads in the development of leukemia in a high leukemia stock of mice. Cancer Res., 4, 377

    Google Scholar 

  19. Prehn, R. T. (1963). Function of depressed immunologic reactivity during carcinogenesis. J. Natl. Cancer Inst. 31, 791

    PubMed  CAS  Google Scholar 

  20. Bartlett, G. L. (1972). Effect of host immunity on the antigenic strength of primary tumours. J. Natl. Cancer Inst. 49, 493

    PubMed  CAS  Google Scholar 

  21. Pike, M. C. and Snyderman, R. (1976). Depression of macrophage function by a factor produced by neoplasms: A mechanism for abrogration of immune surveillance. J. Immunol., 121, 1243

    Google Scholar 

  22. Hibbs, J.B. Jr., Chapman, H.A. Jr., and Weinberg, J.B. (1978). The macrophage as an antineoplastic surveillance cell: Biological perspectives. J. Reticuloendothelial Soc., 24, 549

    CAS  Google Scholar 

  23. Normann, S. J., Schandt, M. and Sorkin, E. (1979). Anti-inflammatory effect of spontaneous lymphoma in SJL/J mice. J. Natl. Cancer Inst., 63, 825

    PubMed  CAS  Google Scholar 

  24. Normann, S. J., Schardt, M. and Sorkin, E. (1979). Cancer progression and monocyte inflammatory dysfunction: Relationship to tumor excision and metastasis. Int. J. Cancer 23, 110

    Article  PubMed  CAS  Google Scholar 

  25. Stevenson, M. M., Meltzer, M. S. and Steinberg, G. (1979). Alteration of macrophage function in mice with transplantable tumours: Evidence for virus-induced changes. Fed. Proc, 38, 1094

    Google Scholar 

  26. Gianciolo, G. J., Thiel, H. J., Bolognesi, D.P., and Snyderman, R. (1979). Macrophage accumulation inhibited by extracts of murine leukemia viruses (MLV). Fed. Proc, 38, 1364

    Google Scholar 

  27. Eccles, S.A. (1977). Studies on the effect of rat sarcomata on the migration of mononuclear phagocytes in vitro and in vivo. In James, K., McBride, B. and Stuart, A. (eds.) The Macrophage and Cancer, pp. 308–320. (Edinburgh: Econoprint)

    Google Scholar 

  28. Snyderman, R. and Pike, M. C. (1976). An inhibitor of macrophage Chemotaxis produced by neoplasms. Science, 192, 370

    Article  PubMed  CAS  Google Scholar 

  29. Normann, S. J. (1978). Tumor cell threshold required for suppression of macrophage inflammation. J. Natl. Cancer Inst., 60, 1091

    PubMed  CAS  Google Scholar 

  30. Normann, S.J. and Sorkin, E. (1977). Inhibition of macrophage Chemotaxis by neoplastic and other rapidly proliferating cells in vitro. Cancer Res., 37, 705

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 MTP Press Limited

About this chapter

Cite this chapter

Normann, S., Schardt, M., Sorkin, E. (1980). Anti-inflammation in spontaneously arising animal cancers. In: Willoughby, D.A., Giroud, J.P. (eds) Inflammation: Mechanisms and Treatment. Inflammation: Mechanisms and Treatment, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9423-8_96

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9423-8_96

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9425-2

  • Online ISBN: 978-94-010-9423-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics