Skip to main content

Hydrogen ion regulation during hypothermia: from the Amazon to the operating room

  • Chapter
Book cover Applied Physiology in Clinical Respiratory Care

Part of the book series: Developments in Critical Care Medicine and Anaesthesiology ((DCCA,volume 1))

Abstract

What is the optimal acid-base management of patients subjected to hypothermia for surgical intervention? One approach is to consider how other vertebrates manage hydrogen ion regulation when their body temperature is reduced. (For a recent review, see also White [34]). Two major strategies emerge, each with very different objectives. One is used by hibernators, the other by ectotherms and heterotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin JH, Sunderman FW, Camack JG: Studies in serum electrolytes. II. The electrolyte composition and the pH of serum of a poikilothermous animal at different temperatures. J Biol Chem 72: 677–685, 1927.

    CAS  Google Scholar 

  2. Becker H, Vinten-Johansen J, Buckberg GD, Robertson JM, Leaf JD: Myocardial damage caused by keeping pH 7.40 during systemic deep hypothermia. J Thorac Cardiovasc Surg 82: 810–820, 1981.

    CAS  PubMed  Google Scholar 

  3. Blayo MC, Lecompte Y, Pocidalo JJ: Control of acid-base status during hypothermia in man. Respir Physiol 42: 287–298, 1980.

    Article  CAS  PubMed  Google Scholar 

  4. Davis BD: On the importance of being ionized. Arch Biochem Biophys 78: 497–509, 1958.

    Article  CAS  PubMed  Google Scholar 

  5. Fox LS, Blackstone EH, Kirklin JW, Stewart RW, Samuelson PN: The relationship of whole body oxygen consumption to perfusion flow rate during hypothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg 83: 239–248, 1981.

    Google Scholar 

  6. Garey WF, and Rahn H: Gas exchange between air and water and the ventilation pattern in the Electric Eel. Respir Physiol 9: 151–161, 1970.

    Article  Google Scholar 

  7. Garey WF: Determination of the normal blood pH of fishes. Respir Physiol 14: 180–182, 1972.

    CAS  PubMed  Google Scholar 

  8. Howell BJ, Baumgardner FW, Bondi K, and Rahn H: Acid-base balance in cold-blooded vertebrates as a function of body temperature. Am J Physiol 218: 600–606, 1970.

    CAS  PubMed  Google Scholar 

  9. Howell BJ, and Rahn H: Regulation of acid-base balance in reptiles. In: Gans C, Dawson WR (eds) Biology of the Reptilia, vol 5. London: Academic Press, 1976, pp 335–363.

    Google Scholar 

  10. Jackson DC: The effect of temperature on ventilation in the turtle (Pseudemys scripta elegans). Respir Physiol 12: 131–140, 1971.

    Article  CAS  PubMed  Google Scholar 

  11. Jackson DC: Ventilatory response to hypoxia in turtles at various temperatures. Respir Physiol 18: 178–187, 1973.

    Article  CAS  PubMed  Google Scholar 

  12. Malan A, Arens H, Waechter A: Pulmonary respiration and acid-base state in hibernating marmots and hamsters. Respir Physiol 17: 45–61, 1973.

    Article  CAS  PubMed  Google Scholar 

  13. Malan A, Wilson TL, Reeves RB: Intracellular pH in cold-blooded vertebrates as a function of body temperature. Respir Physiol 28: 29–47, 1976.

    Article  CAS  PubMed  Google Scholar 

  14. Malan A, Rodeau JL, and Daull F: Intracellular pH in hibernating hamsters. Cryobiology 18: 100–101, 1981.

    Article  Google Scholar 

  15. Malan A: Respiration and acid-base state in hibernation. In: Lyman CP (ed) Hibernation and torpor in mammals and birds. New York: Academic Press, 1982 (in press).

    Google Scholar 

  16. McConnell DH, White F, Nelson RL, Goldstein SM, Maloney JV, DeLand EC, and Buckberg GD: Importance of alkalosis in maintenance of “ideal” blood pH during hypothermia. Surg Forum 26: 263–265, 1975.

    CAS  PubMed  Google Scholar 

  17. Prakash O, Jonson B, Bos E, Meij S, Hugenholtz PG, and Heckman W: Cardiorespiratory and metabolic effects of profound hypothermia. Crit Care Med 6: 340–346, 1978.

    Article  CAS  PubMed  Google Scholar 

  18. Rahn H: Gas transport from the external environment to the cell. In: Reuck AVS de, Porter R (eds) Development of the Lung, Ciba Foundation Symposium. London: J and A Churchill, 1967, pp 3–23.

    Chapter  Google Scholar 

  19. Rahn H, and Garey WF: Arterial C02, 02, pH and HC03 values of ectotherms living in the Amazon. Am J Physiol 225: 735–738, 1973.

    CAS  PubMed  Google Scholar 

  20. Rahn H: Body temperature and acid-base regulation. Pneumonologie 151: 87–94, 1974.

    Article  CAS  PubMed  Google Scholar 

  21. Rahn H, Reeves RB, and Howell BJ: Hydrogen ion regulation, temperature, and evolution. Am Rev Respir Dis 112: 165–172, 1975.

    CAS  PubMed  Google Scholar 

  22. Rahn H, Howell BJ: The OH¯/H+ concept of acid-base balance: historical development. Respir Physiol 33: 91–97, 1978.

    Article  CAS  PubMed  Google Scholar 

  23. Rahn H, Reeves RB: Protons, proteins and Claude Bernard’s “fixite du milieu interieur”. In: La Transmission neuromusculaire. Les Mediateurs et le “milieu interieur”. Paris Masson, Fondation Singer-Polignac, 1980, pp 265–274.

    Google Scholar 

  24. Reeves RB: Role of body temperature in determining the acid-base state in vertebrates. Fed Proc 28: 1204–1208, 1969.

    CAS  PubMed  Google Scholar 

  25. Reeves RB: An imidazole alpha-stat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14: 219–236, 1972.

    Article  CAS  PubMed  Google Scholar 

  26. Reeves RB: Temperature-induced changes in blood acid-base status: Donnan rCl and red cell volume. J Appl Physiol 40: 762–767, 1976.

    CAS  PubMed  Google Scholar 

  27. Reeves RB, and Malan A: Model studies of intracellular acid-base temperature responses in ectotherms. Respir Physiol 28: 49–63, 1976.

    Article  CAS  PubMed  Google Scholar 

  28. Reeves RB: The interaction of body’ temperature and acid-base balance in ectothermic vertebrates. Annu Rev Physiol 39: 559–586, 1977.

    Article  CAS  PubMed  Google Scholar 

  29. Reeves RB, and Rahn H: Patterns in vertebrate acid-base regulation. In: Wood S, Lenfant C (eds) Evolution of respiratory processes: a comparative approach. New York: Marcel Dekker, 1979, pp 225–252.

    Google Scholar 

  30. Robin ED: Relationship between temperature and plasma pH and carbon dioxide tension in the turtle. Nature (London) 195: 249–251, 1962.

    Article  CAS  Google Scholar 

  31. Rodeau JL, and Malan A: A two-compartment model of blood acid-base state at constant or variable temperature. Respir Physiol 37: 5–30, 1979.

    Article  CAS  PubMed  Google Scholar 

  32. Snapp BD, and Heller HC: Suppression of metabolism during hibernation in ground squirrels (Citellus lateralis). Physiol Zool 54: 297–307, 1981.

    Google Scholar 

  33. Somero GN: pH-Temperature interactions on proteins: principles of optimal pH and buffer system design. Mar Biol Lett 2:163–178,1981.

    CAS  Google Scholar 

  34. White FN: A comparative physiological approach to hypothermia — Editorial. J Thorac Cardiovasc Surg 82: 821–831, 1981.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rahn, H., Reeves, R.B. (1982). Hydrogen ion regulation during hypothermia: from the Amazon to the operating room. In: Prakash, O. (eds) Applied Physiology in Clinical Respiratory Care. Developments in Critical Care Medicine and Anaesthesiology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-7567-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-7567-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-7569-9

  • Online ISBN: 978-94-009-7567-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics