Skip to main content

Heteroscedasticity and serial correlation

  • Chapter
Regression Analysis with Applications

Abstract

There are many situations occurring in practice when the simple structure of random variation assumed in (1.1) does not hold; examples will be given below. Suppose that instead of (1.1) we have

$$\left. {{}_{V\left( Y \right)\, = \,V{\sigma ^2},}^{E\left( Y \right)\, = \,a\theta ,}} \right\}$$
((9.1))

where V is a known n × n positive definite matrix, then the appropriate method of estimation is generalized least squares (GLS), leading to

$$\hat \theta g = {\left( {a'{V^{ - 1}}a} \right)^{ - 1}}a'{V^{ - 1}}Y.$$
((9.2))

If V = 1, then this reduces to the ordinary least squares (OLS) estimator

$$\hat \theta = a{\left( {a'a} \right)^{ - 1}}a'Y.$$
((9.3))

If (9.3) is used when (9.2) is appropriate, then (9.3) is still unbiased, but it is not efficient, and the OLS estimator of σ 2 will in general be biased. All tests will therefore be invalid, Clearly, further research needs to be carried out on how serious the effects are of using OLS when (9.2) ought to be used, but this argument indicates the desirability of testing for departures from the assumption of V = I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anscombe, J. F. (1961) Examination of residuals. Proceedings of the Fourth Berkely Symposium on Mathematical Statistics and Probability, Vol. 1. University of California Press, Berkeley, CA, pp. 1–36.

    Google Scholar 

  • Bickel, P. J. (1978) Using residuals robustly. I: Tests for heteroscedasticity, nonlinearity. Ann. Statist., 6, 266–291.

    Article  Google Scholar 

  • Bradley, E. L. (1973) The equivalence of maximum likelihood and weighted least squares estimates in the exponential family. J. Amer. Statist. Assoc., 68, 199–200.

    Google Scholar 

  • Carroll, R. J. and Ruppert, D. (1981) On robust test for heteroscedasticity. Ann. Statist., 9, 205–209.

    Article  Google Scholar 

  • Chambers, J. M. (1977) Computational Methods for Data Analysis. Wiley, New York.

    Google Scholar 

  • Charnes, A., Frome, E. L. and Yu, P. L. (1976) The equivalence of generalized least squares and maximum likelihood estimates in the exponential family. J. Amer. Statist. Assoc., 71, 169–171.

    Article  Google Scholar 

  • Cook, R. D. and Weisberg, S. (1983) Diagnostics for heteroscedasticity in regression. Biometrika, 70, 1–10.

    Article  Google Scholar 

  • Durbin, J. and Watson, G. S. (1950) Testing for serial correlation in least squares regression, I. Biometrika, 37, 409–428.

    Google Scholar 

  • Durbin, J. and Watson, G. S. (1971) Testing for serial correlation in least squares regression, III. Biometrika, 58, 1–42.

    Google Scholar 

  • Farebrother, R. W. (1980) AS 153 Pan’s procedure for the tail probabilities of the Durbin-Watson statistic. Appl. Statist., 29, 224–227.

    Article  Google Scholar 

  • Glejser, H. (1969) A new test for heteroscedasticity. J. Amer. Statist. Assoc., 64, 316–323.

    Article  Google Scholar 

  • Godfrey, L. G. (1978) Testing for multiplicative heteroscedasticity. J. Econ., 8, 227–236.

    Article  Google Scholar 

  • Goldfeld, S. M. and Quandt, R. E. (1965) Some tests for homoscedasticity. J. Amer. Statist. Assoc., 60, 539–547.

    Article  Google Scholar 

  • Harrison, M. J. and McCabe, B. P. M. (1979) A test for heteroscedasticity based on ordinary least squares residuals. J. Amer. Statist. Assoc., 74, 494–499.

    Google Scholar 

  • Harvey, A. C. (1976) Estimating regression models with multiplicative heteroscedasticity. Econometrica, 44, 461–465.

    Article  Google Scholar 

  • Harvey, A. C. and Phillips, G. D. A. (1974) A comparison of the power of some tests for heteroscedasticity in the general linear model. J. Econ. 2, 307–316.

    Article  Google Scholar 

  • Hedayat, A. and Robson, D. S. (1970) Independent stepwise residuals for testing homoscedasticity. J. Amer. Statist. Assoc., 65, 1573–1581.

    Article  Google Scholar 

  • Holt, D., Smith, T. M. F. and Winter, P. D. (1980) Regression analysis of data from complex surveys. J. Roy. Statist. Soc. A, 143, 474–487.

    Google Scholar 

  • Horn, P. (1981) Heteroscedasticity: a non-parametric alterative to the Goldfeld-Quandt peak test. Commun. Statist. A, 10, 795–808.

    Google Scholar 

  • Judge, G. G., Griffiths, W. E., Hill, R. C. and Lee, Tsoung-Chao (1980) The Theory and Practice of Econometrics. Wiley, New York.

    Google Scholar 

  • Koenker, R. (1981) A note on studentizing a test for heteroscedasticity. J. Econ., 17, 107–112.

    Article  Google Scholar 

  • L’Esperance, W. L. Chall, D. and Taylor, D. (1976) An algorithm for determining the distribution function of the Durbin-Watson statistic. Econometrika, 44, 1325–1346.

    Google Scholar 

  • Nelder, J. A. and Wedderburn, R. W. M. (1972) Generalized linear models. J. Roy. Statist. Soc. A, 135, 370–384.

    Google Scholar 

  • von Neumann, J. (1941) Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Statist., 12, 367–395.

    Article  Google Scholar 

  • Park, R. E. (1966) Estimation with heteroscedastic error terms. Econometrica, 34, 888.

    Article  Google Scholar 

  • Ramsey, J. B. (1969) Tests for specification errors in classical linear least squares regression analysis. J. Roy. Statist. Soc. B, 31, 350–371.

    Google Scholar 

  • Rutemiller, H. C. and Bowers, D. A. (1968) Estimation in a heteroscedastic regression model. J. Amer. Statist. Assoc., 63, 552–557.

    Article  Google Scholar 

  • Szroeter, J. (1978) A class of parametric tests for heteroscedasticity in linear econometric models. Econometrica, 46, 1311–1327.

    Article  Google Scholar 

  • Theil, H. (1971) Principles of Econometrics. Wiley, New York.

    Google Scholar 

  • Williams, E. J. (1959) Regression Analysis. Wiley, New York.

    Google Scholar 

Further reading

  • Abdullah, M. (1979) Tests for heteroscedasticity in regression: a review. M.Sc. Dissertation, University of Kent.

    Google Scholar 

  • Draper, N. R. and Smith, H. (1981) Applied Regression Analysis. Wiley, New York.

    Google Scholar 

  • Nelder, J. A. (1968) Regression, model building and invariance. J. Roy. Statist. Soc. A, 131, 303–315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 G. Barrie Wetherill

About this chapter

Cite this chapter

Barrie Wetherill, G., Duncombe, P., Kenward, M., Köllerström, J., Paul, S.R., Vowden, B.J. (1986). Heteroscedasticity and serial correlation. In: Regression Analysis with Applications. Monographs on Statistics and Applied Probability. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4105-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4105-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8322-5

  • Online ISBN: 978-94-009-4105-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics