Skip to main content

Abstract

An introduction to the basic relationship between chlorophyll a fluorescence yield and functioning of the photosynthetic apparatus is given. The principles governing the fluorescence decline by photochemical and non-photochemical mechanisms are summarized. Several ways of non-photochemical fluorescence quenching, related to the energization of the thylakoid membrane (qE), to the phosphorylation of the light harvesting complex of photosystem II (qT), and to photoinhibition of photosynthesis (qI) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

FM:

maximum fluorescence

FO:

initial fluorescence

FV = FM - FO:

maximum variable fluorescence

LHC II:

light harvesting chlorophyll protein complex of photosystem II

PS:

photosystem

PQ:

plastoquinone

QA, QB:

primary and secondary quinone-type electron acceptors of photosystem II

References

  • Barényi B and Krause GH 1985. Inhibition of photosynthetic reactions by light. A study with isolated spinach chloroplasts. Planta 163: 218–226.

    Article  PubMed  Google Scholar 

  • Björkman O and Demmig B 1987: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170: 489–504.

    Article  Google Scholar 

  • Briantais J-M, Vernotte C, Picaud M and Krause GH 1979. A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim. Biophys. Acta 548: 128–138.

    Article  CAS  PubMed  Google Scholar 

  • Briantais J-M, Vernotte C, Krause GH and Weis E 1986. Chlorophyll a fluorescence of higher plants: chloroplasts and leaves. In: Govindjee, Amesz J and Fork DJ. Light emission by plants and bacteria. Academic Press, New York.

    Google Scholar 

  • Butler WL 1977. Chlorophyll fluorescence: a probe for electron transport and energy transfer. In: Trebst A and Avron M. Encyclopedia of plant physiology, new series vol. 5. Springer, Berlin.

    Google Scholar 

  • Butler WL and Kitajima M 1975. Fluorescence quenching in photosystem II of chloroplasts. Biochim. Biophys. Acta 376: 116–125.

    Article  CAS  PubMed  Google Scholar 

  • Cleland RE and Chritchley C 1985. Studies on the mechanism of photoinhibition in higher plants. II. Inactivation by high light of photosystem II in thylakoids and O2 evolving particles. Photobiochem. Photobiophys. 10: 83–92.

    CAS  Google Scholar 

  • Cleland RE, Melis A and Neale PJ 1986. Mechanism of photoinhibition: Photochemical reaction center inactivation in system II of chloroplasts. Photosynth. Res. 9: 79–88.

    Article  CAS  PubMed  Google Scholar 

  • Demmig B and Björkman O 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution of leaves of higher plants. Planta 171: 171–184.

    Article  CAS  PubMed  Google Scholar 

  • Demmig B, Winter G, Krüger A and Czygan F-C 1987. Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol. 84: 218–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng X and Melis A 1986. Phosphorylation of the light-harvesting complex II in higher plant chloroplasts: effect on photosystem II and photosystem I absorption cross section. Photobiochem. Photobiophys. 13: 41–52.

    CAS  Google Scholar 

  • Duysens LNM and Sweers HE 1963. Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In: Jap. Soc. of Physiol. Studies on microalgae and photosynthetic bacteria. Univ. of Tokyo Press, Tokyo.

    Google Scholar 

  • Fernyhough P, Foyer CH and Horton P 1984. Increase in the level of thylakoid protein phosphorylation in maize mesophyll chloroplasts by decrease in the transthylakoid pH gradient. FEBS Lett. 176: 133–138.

    Article  CAS  Google Scholar 

  • Horton P and Hague A 1988. Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching. Biochim. Biophys. Acta 932: 107–115.

    Article  CAS  Google Scholar 

  • Klimov VV and Krasnovskii AA 1981. Pheophytin as a primary electron acceptor in photosystem II reaction center. Photosynthetica 15: 592–609.

    CAS  Google Scholar 

  • Krause GH and Behrend U 1986: ΔpH-dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts. FEBS Lett. 200: 298–302.

    Article  CAS  Google Scholar 

  • Krause GH, Briantais J-M and Vernotte C 1983. Characterization of chlorophyll fluorescence quenching in chloroplasts by fluorescence spectroscopy at 77K. I. ΔpH-dependent quenching. Biochim. Biophys. Acta 723: 169–175.

    Article  CAS  Google Scholar 

  • Krause GH, Briantais J-M and Vernotte C 1982. Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components. Biochim. Biophys. Acta 679: 116–124.

    CAS  Google Scholar 

  • Krause GH and Laasch H 1987. Energy-dependent chlorophyll fluorescence quenching in chloroplasts correlated with quantum yield of photosynthesis. Z. Naturforsch. 42c: 581–584.

    Article  Google Scholar 

  • Krause GH, Laasch H and Weis E 1988. Regulation of thermal dissipation of absorbed light energy in chloroplasts indicated by energy-dependent fluorescence quenching. Plant Physiol. Biochem. 26 (in press).

    Google Scholar 

  • Krause GH and Weis E 1984. Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth. Res. 5: 139–157.

    Article  CAS  PubMed  Google Scholar 

  • Kyle DJ 1987. The biochemical basis for photoinhibition of photosystem II. In: Kyle DJ, Osmond CB and Arntzen CJ. Photoinhibition. Topics of photosynthesis, vol 9. Elsevier, Amsterdam.

    Google Scholar 

  • Laasch H 1987. Non-photochemical quenching of chlorophyll a fluorescence in isolated chloroplasts under conditions of stressed photosynthesis. Planta 171: 220–226.

    Article  CAS  Google Scholar 

  • Ögren E and Öquist G 1984. Photoinhibition of photosynthesis in Lemna gibba as induced by the interaction between light and temperature. III. Chlorophyll fluorescence at 77K. Physiol. Plant. 62: 193–200.

    Article  Google Scholar 

  • Oxborough K and Horton P 1987. Characterisation of the effects of Antimycin A upon high energy state quenching of chlorophyll fluorescence (qE) in spinach and pea chloroplasts. Photosynth. Res. 12: 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Powles SB and Björkman 1982. Photoinhibition of photosynthesis: effect on chlorophyll fluorescence at 77K in intact leaves and in chloroplast membranes of Nerium oleander. Planta 165: 97–107.

    Article  Google Scholar 

  • Satoh K 1988. Reality of P-680 chlorophyll protein. -Identification of primary photochemistry in oxygenic photosynthesis. Physiol. Plant. 72: 209–212.

    Article  CAS  Google Scholar 

  • Schatz GH, Brock H and Holzwarth AR 1987. Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc. Natl. Acad. Sci. 84: 8414–8418.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Schliwa U and Bilger W 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Weis E. 1985. Chlorophyll fluorescence at 77K in intact leaves: Characterization of a technique to eliminate artifacts related to self-absorption. Photosynth. Res. 6: 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Weis E and Berry JA 1987. Quantum efficiency of photosystem II in relation to ‘energy’ -dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 894: 198–207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Krause, G.H., Weis, E. (1988). The Photosynthetic Apparatus and Chlorophyll Fluorescence. An Introduction. In: Lichtenthaler, H.K. (eds) Applications of Chlorophyll Fluorescence in Photosynthesis Research, Stress Physiology, Hydrobiology and Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2823-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2823-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7771-2

  • Online ISBN: 978-94-009-2823-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics