Skip to main content

Central neuronal responses and 5-hydroxytryptamine receptors

  • Chapter
Cardiovascular Pharmacology of 5-Hydroxytryptamine
  • 19 Accesses

Abstract

Most evidence for a role of 5-hydroxytryptamine (5-HT) in hypertension points to an action on the blood vessel wall [1] but many compounds acting on 5-HT receptors also penetrate the blood-brain barrier and central neuronal receptors to 5-HT significantly affect sympathetic outflows [2, 3]. Undoubtedly, the central actions at 5-HT receptors of some antihypertensive agents are of relevance to their therapeutic actions. Until recently the actions of 5-HT on central neurones have been ill defined and controversial due to the lack of a proper framework of receptor definition and a lack of drugs which discriminate between receptor types. Selective agonists and antagonists have been developed in the last decade and the proposed classification of 5-HT receptor types by Bradley et al. [4] has enabled studies of central functional receptors to 5-HT. However, lack of selective antagonists at the 5-HT1-like receptor continues to inhibit proper definition of 5-HT actions in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vanhoutte PM, Luescher TF (1986): Serotonin and the blood vessel wall. J Hypertension 4 (suppl 1):S29–S35.

    Google Scholar 

  2. Chalmers JP, Pilowski PM, Minson JB, Kapoor V, Mills E, West MJ (1988): Central serotonergic mechanisms in hypertension. Am J Hypertension 1: 79–83.

    Article  CAS  Google Scholar 

  3. Ramage AG, Fozard JR (1987): Evidence that the putative 5HT 1A receptor agonists, 8-OH-DPAT and ipsapirone, have a central hypotensive action that differs from that of clonidine in anaesthetised cats. Eur J Pharmacol 138:179–191. 8-OH-DPAT and ipsapirone, have a central hypotensive action that differs from that of clonidine in anaesthetised cats. Eur J Pharmacol 138: 179–191.

    Article  CAS  PubMed  Google Scholar 

  4. Bradley PB, Engel G, Feniuk W, Fozard J, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–576.

    Article  CAS  PubMed  Google Scholar 

  5. Krnjevic K, Phillis JW (1963): Actions of certain amines on cerebral cortical neurones. Br J Pharmacol Chemother 20: 471–490.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Roberts MHT, Straughan DW (1967): Excitation and depression of cortical neurones by 5 Hydroxytryptamine. J Physiol (Lond). 193: 269–294.

    CAS  Google Scholar 

  7. Johnson ES, Roberts MHT, Straughan DW (1969): The responses of cortical neurones to monoamines under differing anaesthetic conditions. J Physiol (Lond) 203: 261–280.

    CAS  Google Scholar 

  8. Gaddum JH, Picarelli ZP (1957): Two kinds of tryptamine receptor. Br J Pharmac Chemother 12: 323–328.

    Article  CAS  Google Scholar 

  9. Bradshaw CM, Roberts MHT, Szabadi E (1974): Effects of imipramine and desipramine on the responses of single cortical neurones to noradrenaline and 5 Hydroxytryptamine. Br J Pharmacol 52: 349–358.

    Article  CAS  PubMed  Google Scholar 

  10. Szabadi E, Bradshaw CM, Bevan P (1977): Excitatory and depressant neuronal responses to noradrenaline, 5-hydroxytryptamine and mescaline: the role of the baseline firing rate. Brain Res 126: 580–583.

    Article  CAS  PubMed  Google Scholar 

  11. Jones, RSG, Roberts MHT (1979): Potentiation of responses to monoamines by antidepressants after destruction of monoamine afferents. Br J Pharmacol 65: 501–510.

    Article  CAS  PubMed  Google Scholar 

  12. Jones RSG, Boulton AA (1980): Tryptamine and 5-hydroxytryptamine: actions andinteractions on cortical neurons in the rat. Life Sci 27: 1849–1856.

    Article  CAS  PubMed  Google Scholar 

  13. Bradshaw CM, Stoker MJ, Szabadi E (1983): Comparison of neuronal responses to 5-Hydroxytryptamine, noradrenaline and phenylephrine in the cerebral cortex: effects of haloperidol and methysergide. Neuropharmacology 22: 677–683.

    Article  CAS  PubMed  Google Scholar 

  14. Boakes RJ, Bradley PB, Briggs I, Dray A (1970): Antagonism of 5-hydroxytryptamine by LSD-25 in the central nervous system: a possible basis for the actions of LSD–25. Br J Pharmacol 40: 202–218.

    Article  CAS  PubMed  Google Scholar 

  15. Couch JR (1970): Responses of neurons in the raphe nuclei to serotonin, norepinephrine and acetylcholine and their correlation with an excitatory synaptic input. Brain Res 19: 137–150.

    Article  CAS  PubMed  Google Scholar 

  16. Couch JR (1976): Further evidence for a possible excitatory serotonergic synapse on raphe neurons of pons and lower midbrain. Life Sci 19: 761–768.

    Article  CAS  PubMed  Google Scholar 

  17. Hosli L, Tebecis AK, Schonwetter HP (1970): Monoamines, LSD and brain stem reticular neurones. Experientia 26: 7.

    Article  Google Scholar 

  18. Bradley PB, Briggs, I (1974): Further studies on the mode of action of psychotomimetic drugs: antagonism of the excitatory actions of 5-hydroxytryptamine by methylated derivatives of tryptamine. Br J Pharmacol 50: 345–354.

    Article  CAS  PubMed  Google Scholar 

  19. Llewelyn MB, Azami J, Roberts MHT (1983): Effects of 5-Hydroxytryptamine applied into nucleus raphe magnus on nociceptive thresholds and neuronal firing rate. Brain Res 258: 59–68.

    Article  CAS  PubMed  Google Scholar 

  20. Tebecis AK (1970): Effects of monoamines and amino acids on medial geniculate neurones of the cat. Neuropharmacology 9: 381–391.

    Article  CAS  PubMed  Google Scholar 

  21. York DH (1970): Possible dopaminergic pathway from substantia nigra to putamen. Brain Res 20: 233–247.

    Article  CAS  PubMed  Google Scholar 

  22. Belcher G, Ryall RW, Schaffner R (1978): The differential effects of 5-Hydroxytryptamine, noradrenaline, and raphe stimulation on nociceptive and non-nociceptive dorsal horn interneurones in the cat. Brain Res 151: 307–321.

    Article  CAS  PubMed  Google Scholar 

  23. McCall RB (1983): Serotonergic excitation of sympathetic preganglionic neurones: a microiontophoretic study. Brain Res 289: 121–127.

    Article  CAS  PubMed  Google Scholar 

  24. Haigler HJ, Aghajanian GK (1974): Lysergic acid diethylamide and serotonin: a comparison of effects on serotonergic neurons and neurons receiving a serotonergic input. J Pharm Exp Ther 18:688–699.

    Google Scholar 

  25. Haigler HJ, Aghajanian GK (1974): Peripheral serotonin antagonists: failure to antagonise serotonin in brain areas receiving a prominent serotonergic input J Neural Trans 35: 257–273.

    Article  CAS  Google Scholar 

  26. Haigler HJ, Aghajanian GK (1977): Serotonin receptors in brain. Fed Proc 36: 2159–2164.

    CAS  PubMed  Google Scholar 

  27. Segal M (1976): 5-HT antagonists in rat hippocampus. Brain Res 103:161–166.

    Article  CAS  PubMed  Google Scholar 

  28. Wang RY, Aghajanian GK (1977): Inhibition of neurones in the amygdala by dorsal raphe stimulation: mediation through a direct serotonergic pathway. Brain Res 120: 85–102.

    Article  CAS  PubMed  Google Scholar 

  29. Blier P, de Montigny C (1983): Effects of quipazine on pre- and postsynaptic serotonin receptors: single cell studies in the rat CNS. Neuropharm 22: 495–499.

    Article  CAS  Google Scholar 

  30. Barasi S, Roberts MHT (1974): The modification of lumbar motoneurone excitability by stimulation of a putative 5-Hydroxytryptamine pathway. Br J Pharmacol 52: 339–348.

    Article  CAS  PubMed  Google Scholar 

  31. McCall RB, Aghajanian GK (1979): Serotonergic facilitation of facial motoneuron excitation. Brain Res 169: 11–27.

    Article  CAS  PubMed  Google Scholar 

  32. McCall RB, Aghajanian GK (1980): Pharmacological characterization of serotonin receptors in the facial motor nucleus: a microiontophoretic study. Eur J Pharmacol 65: 175–183.

    Article  CAS  PubMed  Google Scholar 

  33. Parry O, Roberts MHT (1980): Responses of motoneurones to 5-Hydroxytryptamine. Neuropharmacology 19: 515–518.

    Article  CAS  PubMed  Google Scholar 

  34. White SR, Neuman RS (1980): Facilitation of spinal motoneurone excitability by 5-hydroxytryptamine and noradrenaline. Brain Res 188: 119–127.

    Article  CAS  PubMed  Google Scholar 

  35. Bennett JL, Aghajanian GK (1974): d-LSD binding to rat brain homogenates: a possible relationship to serotonin receptors. Life Sci 15:1935’1944.

    Article  CAS  PubMed  Google Scholar 

  36. Bennett JP, Snyder SH (1976): Serotonin and lysergic acid diethylamide binding in rat brain membranes. Relationship to post synaptic serotonin receptors. Molec Pharmacol 12: 373–389.

    CAS  Google Scholar 

  37. Peroutka SJ, Snyder SH (1979): Multiple serotonin receptors: Differential binding of [3H] 5-hydroxytryptamine, [3H] lysergic acid diethylamide and [3H] spiroperidol. Molec Pharmacol 16: 687–699.

    CAS  Google Scholar 

  38. Leysen JE, Awouters F, Kennis L, Laduron PM, Vandenberg J, Janssen PAJ (1981): Receptor binding profile of R 41 468, a novel antagonist at 5-HT receptors. Life Sci 28: 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  39. Engel G, Gothert M, Hoyer D, Schlicker E, Hillenbrand K (1986): Identity of inhibitory presynaptic 5-hydroxytryptamine (5HT) autoreceptors in the rat brain cortex with 5HT1B binding sites. Nauynyn-Schmiedeberg’s Arch Pharmacol 322: 1–7.

    Article  Google Scholar 

  40. Green AR, Hall JE, Rees AR (1981): A behavioural study in rats of 5-hydroxytryptamine receptor agonists and antagonists, with observations on structure-activity requirements for the agonists. Br J Pharmacol 73: 703–719.

    Article  CAS  PubMed  Google Scholar 

  41. Pedigo NW, Yamamura HI, Nelson DL (1981): Discrimination of multiple 3H 5-hydroxytryptamine binding sites in rat brain by neuroleptics. J Neurochem 36: 220–226.

    Article  CAS  PubMed  Google Scholar 

  42. Deshmukh PP, Nelson DL, Yamamura HI (1982): Localisation of 5HT1 receptor subtypes in rat brain by autoradiography. Fed Proc 41: 6238.

    Google Scholar 

  43. Pazos A, Hoyer D, Palacios JM (1984): The binding of serotonergic ligands to the porcine choroid plexus: characterisation of a new type of serotonin recognition site. Eur J Pharmacol 106: 539–546.

    Article  CAS  PubMed  Google Scholar 

  44. Hoyer D, Engel G, Kalkman HO (1985): Molecular pharmacology of 5HT 1 and 5HT 2 recognition sites in rat and pig brain membranes: Radioligand binding studies with [3H]5HT, [3H]8-OH-DPAT, (—)[125 I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. European J Pharmacol 118: 13–23.

    Article  CAS  Google Scholar 

  45. Hoyer D, Pazos A, Probst A, Palacios JM (1986): Serotonin receptors in the human brain. 1 Characterisation and autoradiographic localisation of 5HT 1A sites. Apparant absence of 5HT 1B sites. Brain Res 376: 85–96.

    Article  CAS  PubMed  Google Scholar 

  46. Kilpatrick GJ, Jones BJ, Tyers MB (1987): Identification and distribution of 5HT 3 receptors in rat brain using radioligand binding. Nature 330: 746–748.

    Article  CAS  PubMed  Google Scholar 

  47. Jones BJ, Oakey NR, Tyers MB (1987): The anxiolytic activity of GR 38032F, a 5HT 3 receptor antagonist in the rat and cynomolgus monkey. Br J Pharmacol 90: 90 P.

    Google Scholar 

  48. Carmichael J, Cantwell BMJ, Edwards CM, Rapeport WG, Harris AL (1988): The serotonin type 3 receptor antagonist BRL 43694 and nausea and vomiting induced by cisplatin. Br Med J 297: 110–111.

    Article  Google Scholar 

  49. Andrews PLR, Hawthorn J (1987): Evidence for an extra–abdominal site of action for the 5HT 3 receptor antagonist BRL 24924 in the inhibition of radiation-evoked emesis in the ferret. Neuropharmacology 26: 1367–1370.

    Article  CAS  PubMed  Google Scholar 

  50. Costall B, Domeny AM, Gunning SJ, Nayor RJ, Tatersall FD, Tyers MB (1987). GR 38032F: a potent and novel inhibitor of cisplatin-induced emesis in the ferret. Br J Pharmacol 90: 90 P.

    Google Scholar 

  51. Aghajanian GK (1981): The modulatory role of serotonin at multiple receptors in brain, pp. 156–185 in: Jacobs BL, Gelperin A (eds), Serotonin neurotransmission and behaviour. Cambridge: MIT Press.

    Google Scholar 

  52. Bevan P, Bradshaw CM, Roberts MHT, Szabadi E (1973): Effects of pH on the release of noradrenaline from micropipettes. Jpharm Pharmac 25: 1007–1008.

    Article  CAS  Google Scholar 

  53. Briggs I (1977): Excitatory responses of neurones in rat bulbar reticular formation to bulbar raphe stimulation and to iontophoretically applied 5-hydroxytryptamine and their blockade by LSD-25. J Physiol 265: 327–340.

    CAS  PubMed  Google Scholar 

  54. Jones RSG (1982): Responses of cortical neurones to stimulation of nucleus raphe medianus: a pharmacological analysis of the role of indoleamines. Neuropharmacology 21: 511–520.

    Article  CAS  PubMed  Google Scholar 

  55. Jones RSG, Broadbent J (1982): Differential effects of fluoxetine and zimelidine on the uptake of 5-hydroxytryptamine and tryptamine by cortical slices and on responses of cortical neurones to stimulation of the nucleus raphe medianus. Eur J Pharmacol 81: 681–685.

    Article  CAS  PubMed  Google Scholar 

  56. Jones RSG, Broadbent J (1982): Further studies on the role of indoleamines in the responses of cortical neurones to stimulation of nucleus raphe medianus: effects of indoleamine precursor loading. Neuropharmacology 21: 1273–1277.

    Article  CAS  PubMed  Google Scholar 

  57. Park MR, Gonzales-Vegas JA, Kitai ST (1982): Serotonergic excitation from dorsal raphe stimulation recorded intracellular from rat caudate-putamen. Brain Res 243: 49–58.

    Article  CAS  PubMed  Google Scholar 

  58. Davies M, Wilkinson LS, Roberts MHT (1988) Evidence for excitatory 5-HT 2 receptors on rat brainstem neurones. Br J Pharmacol 94: 483–491.

    Article  CAS  Google Scholar 

  59. Davies M, Wilkinson LS, Roberts MHT (1988): Evidence for depressant 5HT 1-like receptors on rat brainstem neurones. Br J Pharmacol: 94: 492–499.

    Article  CAS  PubMed  Google Scholar 

  60. Roberts M, Davies M, Girdlestone D, Foster GA (1988): Spinal motoneurone responses to stimulation of raphe obscurus, application of 5-hydroxytryptamine (5HT) and 5HT receptor agonists and antagonists. Brit J Pharmacol 95: 437–448.

    Article  CAS  Google Scholar 

  61. Montigny, C de, Aghajanian GK (1977): Preferential action of 5-methoxytryptamine and 5-methoxydimethyltryptamine on presynaptic serotonin receptors: a comparative ionto-phoretic study with LSD and serotonin. Neuropharmacology 16: 811–815.

    Article  Google Scholar 

  62. Yarborough GG, Singh DK, Pettibone DJ (1984): A comparative electrophysiological and biochemical assessment of serotonin (5–HT) and a novel 5–HT agonist (MK–212) on central serotonergic receptors. Neuropharmacology 23: 1271–1277.

    Article  Google Scholar 

  63. Paterson I (1985): The actions of Beta carbolines on single neurones in the central nervous system. PhD thesis. University of Wales.

    Google Scholar 

  64. Fozard JR (1984): MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 326: 36–44.

    Article  CAS  Google Scholar 

  65. Feniuk, W, Humphrey PPA, Perren MJ, Watts AD (1985): A comparison of 5-hydroxy-tryptamine receptors mediating contraction in rabbit aorta and dog saphenous vein: evidence for different receptor types obtained by use of selective agonists and antagonists. Br J Pharmacol 86: 697–704.

    Article  CAS  PubMed  Google Scholar 

  66. Lakoski JM, Aghajanian GK (1985): Effects of ketanserin on neuronal responses to serotonin in the prefrontal cortex, lateral geniculate and dorsal raphe nucleus. Neuropharmacology 24: 265–273.

    Article  CAS  PubMed  Google Scholar 

  67. Mason R (1985): Characterisation of 5HT sensitive neurones in the rat CNS using iontophoresed 8-OH-DPAT and ketanserin. Br J Pharmacol 86: 433 P.

    Google Scholar 

  68. Sastry BSR, Phillis JW (1977): Metergoline as a selective 5-hydroxytryptamine antagonist in the cerebral cortex. Can J Pharmac 55: 130–135.

    Article  CAS  Google Scholar 

  69. Jones RSG (1982): A comparison of the responses of cortical neurons to iontophoretically applied tryptamine and 5-hydroxytryptamine in the rat. Neuropharmacology 21, 209–214.

    Article  CAS  PubMed  Google Scholar 

  70. Connell LA, Wallis DI (1988): Responses to 5-hydroxytryptamine evoked in the hemisected spinal cord of the neonate rat. Br J Pharmacol 94: 1101–1114.

    Article  CAS  PubMed  Google Scholar 

  71. Connell LA, Wallis DI (1989): 5-hydroxytryptamine depolarises neonatal rat motoneurones via a receptor unrelated to an identified binding site. Neuropharmacology 28: 625–634.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roberts, M.H.T., Davies, M. (1990). Central neuronal responses and 5-hydroxytryptamine receptors. In: Saxena, P.R., Wallis, D.I., Wouters, W., Bevan, P. (eds) Cardiovascular Pharmacology of 5-Hydroxytryptamine. Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine, vol 106. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0479-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0479-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6701-0

  • Online ISBN: 978-94-009-0479-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics