Skip to main content

Cooperative Effects in Plasmonics

  • Chapter
  • First Online:
  • 4407 Accesses

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 15))

Abstract

In this chapter, we present our results on cooperative effects in hybrid plasmonic system involving a large number of fluorophores, e.g., dye molecules or semiconductor quantum dots, situated near a plasmonic nanostructure, e.g., metal nanoparticle. The optical properties of such complex systems are governed by the plasmon-mediated coupling between the fluorophores that leads to drastic changes in the system optical properties. Specifically, we consider in some detail two manifestations of plasmon-assisted cooperative behavior near a spherical nanoparticle: (a) superradiance by an ensemble of emitters and (b) cooperative energy transfer from an ensemble of donors to an acceptor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  CAS  Google Scholar 

  2. M. Gross, S. Haroche, Phys. Rep. 93, 301 (1982)

    Article  CAS  Google Scholar 

  3. A.V. Andreev, V.I. Emel’yanov, Y.A. Il’inskii, Cooperative Effects in Optics (IOP Publishing, London, 1993)

    Google Scholar 

  4. T. Brandes, Phys. Rep. 408, 315 (2005)

    Article  CAS  Google Scholar 

  5. R.G. DeVoe, R.G. Brewer, Phys. Rev. Lett. 76, 2049 (1996)

    Article  CAS  Google Scholar 

  6. M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, D. Hommel, Nat. Phys. 3, 106 (2007)

    Article  CAS  Google Scholar 

  7. F.C. Spano, S. Mukamel, J. Chem. Phys. 91, 683 (1989)

    Article  CAS  Google Scholar 

  8. T.V. Shahbazyan, M.E. Raikh, Z.V. Vardeny, Phys. Rev. B 61, 13266 (2000)

    Article  CAS  Google Scholar 

  9. T.V. Shahbazyan, M.E. Raikh, Phys. Rev. B 49, 17123 (1994)

    Article  CAS  Google Scholar 

  10. T.V. Shahbazyan, S.E. Ulloa, Phys. Rev. B 57, 6642 (1998)

    Article  CAS  Google Scholar 

  11. T. Brandes, B. Kramer, Phys. Rev. Lett. 83, 3021 (1999)

    Article  CAS  Google Scholar 

  12. V.N. Pustovit, T.V. Shahbazyan, Phys. Rev. Lett. 102, 077401 (2009)

    Article  Google Scholar 

  13. V.N. Pustovit, T.V. Shahbazyan, Phys. Rev. B 82, 075429 (2010)

    Article  Google Scholar 

  14. R.R. Chance, A. Prock, R. Silbey, Adv. Chem. Phys. 37, 1 (1978)

    CAS  Google Scholar 

  15. B.N.J. Persson, N.D. Lang, Phys. Rev. B 26, 5409 (1982)

    Article  CAS  Google Scholar 

  16. I.A. Larkin, M.I. Stockman, M. Achermann, V.I. Klimov, Phys. Rev. B 69, 121403(R) (2004)

    Article  Google Scholar 

  17. V.N. Pustovit, T.V. Shahbazyan, J. Chem. Phys. 136, 204701 (2012)

    Article  CAS  Google Scholar 

  18. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)

    Article  CAS  Google Scholar 

  19. E. Dulkeith, A.C. Morteani, T. Niedereichholz, T.A. Klar, J. Feldmann, S.A. Levi, F.C.J.M. van Veggel, D.N. Reinhoudt, M. Moller, D.I. Gittins, Phys. Rev. Lett. 89, 203002 (2002)

    Article  CAS  Google Scholar 

  20. E. Dulkeith, M. Ringler, T.A. Klar, J. Feldmann, A.M. Javier, W.J. Parak, Nano Lett. 5, 585 (2005)

    Article  CAS  Google Scholar 

  21. P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006)

    Article  Google Scholar 

  22. S. Kühn, U. Hakanson, L. Rogobete, V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006)

    Article  Google Scholar 

  23. F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Nano Lett. 7, 496 (2007)

    Article  CAS  Google Scholar 

  24. J. Gersten, A. Nitzan, J. Chem. Phys. 75, 1139 (1981)

    Article  CAS  Google Scholar 

  25. R. Ruppin, J. Chem. Phys. 76, 1681 (1982)

    Article  CAS  Google Scholar 

  26. A. Pineda, D.J. Ronis, J. Chem. Phys. 83, 5330 (1985)

    Article  CAS  Google Scholar 

  27. H. Chew, J. Chem. Phys. 87, 1355 (1987)

    Article  CAS  Google Scholar 

  28. J. Seelig, K. Leslie, A. Renn, S. Kluhn, V. Jacobsen, M. van de Corput, C. Wyman, V. Sandoghdar, Nano Lett. 7, 685 (2007)

    Article  CAS  Google Scholar 

  29. M. Durach, A. Rusina, V.I. Klimov, M.I. Stockman, New J. Phys. 10, 105011 (2008)

    Article  Google Scholar 

  30. L.N. Tripathi, M. Praveena, J.K. Basu, Plasmonics 8, 657 (2013)

    Article  CAS  Google Scholar 

  31. D. Martin-Cano, L. Martin-Moreno, F.J. Garcia-Vidal, E. Moreno, Nano Lett. 10, 3129 (2010)

    Article  CAS  Google Scholar 

  32. S.A. Guebrou, C. Symonds, E. Homeyer, J.C. Plenet, YuN Gartstein, V.M. Agranovich, J. Bellessa, Phys. Rev. Lett. 108, 066401 (2012)

    Article  Google Scholar 

  33. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006)

    Book  Google Scholar 

  34. M.I. Stockman, Phys. Rev. Lett. 79, 4562 (1997)

    Article  CAS  Google Scholar 

  35. T. Förster, Ann. Phys. 437, 55 (1948)

    Article  Google Scholar 

  36. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    Article  CAS  Google Scholar 

  37. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006)

    Book  Google Scholar 

  38. D.L. Andrews, A.A. Demidov (eds.), Resonance Energy Transfer (Wiley, New York, 1999)

    Google Scholar 

  39. D.M. Willard, L.L. Carillo, J. Jung, A. Van Orden, Nano Lett. 1, 469 (2001)

    Article  CAS  Google Scholar 

  40. S.A. Crooker, J.A. Hollingsworth, S. Tretiak, V.I. Klimov, Phys. Rev. Lett. 89, 186802 (2002)

    Article  CAS  Google Scholar 

  41. S.W. Clark, J.M. Harbold, F.W. Wise, J. Phys. Chem. C 111, 7302 (2007)

    Article  CAS  Google Scholar 

  42. A.A. Deniz, T.A. Laurence, G.S. Beligere, M. Dahan, A.B. Martin, D.S. Chemla, P.E. Dawson, P.G. Schultz, S. Weiss, Proc. Natl. Acad. Sci. USA 97, 5179 (2000)

    Article  CAS  Google Scholar 

  43. E.A. Lipman, B. Schuler, O. Bakajin, W.A. Eaton, Science 301, 1233 (2003)

    Article  CAS  Google Scholar 

  44. P.R. Selvin, Nat. Struct. Biol. 7, 730 (2000)

    Article  CAS  Google Scholar 

  45. R.B. Sekar, A. Periasamy, J. Cell Biol. 160, 629 (2003)

    Article  CAS  Google Scholar 

  46. J. Gonzalez, R. Tsien, Biophys. J. 69, 1272 (1995)

    Article  CAS  Google Scholar 

  47. I.L. Medintz, A.R. Clapp, H. Mattoussi, E.R. Goldman, J.M. Mauro, Nat. Mater. 2, 630 (2003)

    Article  CAS  Google Scholar 

  48. D.L. Andrews, C. Curutchet, G.D. Scholes, Laser Photonics Rev. 5, 114 (2011)

    Article  CAS  Google Scholar 

  49. M. Hopmeier, W. Guss, M. Deussen, E.O. Göbel, R.F. Mahrt, Phys. Rev. Lett. 82, 4118 (1999)

    Article  CAS  Google Scholar 

  50. P. Andrew, W.L. Barnes, Science 290, 785 (2000)

    Article  CAS  Google Scholar 

  51. C.E. Finlayson, D.S. Ginger, N.C. Greenham, Chem. Phys. Lett. 338, 83–87 (2001)

    Article  CAS  Google Scholar 

  52. A. Leitner, H. Reinisch, Chem. Phys. Lett. 146, 320–324 (1988)

    Article  CAS  Google Scholar 

  53. J.R. Lakowicz, J. Kusba, Y. Shen, J. Malicka, S. D’Auria, Z. Gryczynski, I. Gryczynski, J. Fluoresc. 13, 69 (2003)

    Article  CAS  Google Scholar 

  54. P. Andrew, W.L. Barnes, Science 306, 1002 (2004)

    Article  CAS  Google Scholar 

  55. J. Zhang, Y. Fu, J.R. Lakowicz, J. Phys. Chem. C 111, 50 (2007)

    Article  CAS  Google Scholar 

  56. J. Zhang, Y. Fu, M.H. Chowdhury, J.R. Lakowicz, J. Phys. Chem. C 111, 11784 (2007)

    Article  CAS  Google Scholar 

  57. F. Reil, U. Hohenester, J.R. Krenn, A. Leitner, Nano Lett. 8, 4128 (2008)

    Article  CAS  Google Scholar 

  58. V.K. Komarala, A.L. Bradley, Y.P. Rakovich, S.J. Byrne, Y.K. Gunko, A.L. Rogach, Appl. Phys. Lett. 93, 123102 (2008)

    Article  Google Scholar 

  59. K.Y. Yang, K.C. Choi, C.W. Ahn, Opt. Express 17, 11495 (2009)

    Article  CAS  Google Scholar 

  60. K.H. An, M. Shtein, K.P. Pipe, Opt. Express 18, 4041 (2010)

    Article  CAS  Google Scholar 

  61. D.L. Andrews, G. Juzeliunas, J. Chem. Phys. 96, 6606 (1992)

    Article  CAS  Google Scholar 

  62. J.I. Gersten, A. Nitzan, Chem. Phys. Lett. 104, 31 (1984)

    Article  CAS  Google Scholar 

  63. X.M. Hua, J.I. Gersten, A. Nitzan, J. Chem. Phys. 83, 3650 (1985)

    Article  CAS  Google Scholar 

  64. S.D. Druger, S. Arnold, L.M. Folan, J. Chem. Phys. 87, 2649 (1987)

    Article  CAS  Google Scholar 

  65. H.T. Dung, L. Knöll, D.-G. Welsch, Phys. Rev. A 65, 043813 (2002)

    Article  Google Scholar 

  66. V.N. Pustovit, T.V. Shahbazyan, Phys. Rev. B 83, 085427 (2011)

    Article  Google Scholar 

  67. K.A. Velizhanin, T.V. Shahbazyan, Phys. Rev. B 86, 245432 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part through NSF under Grant DMR-1206975, CREST Center, and EPSCOR program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tigran V. Shahbazyan .

Editor information

Editors and Affiliations

Appendix

Appendix

Here we collect relevant some formulas for the electric field Green dyadic in the presence of metal NP. The Green dyadic satisfies Maxwell equation

$$\begin{aligned} {\varvec{\nabla }} \times {\varvec{\nabla }} \times \hat{\mathbf{G}} - k^2 \varepsilon (r) \hat{\mathbf{G}} = \hat{\mathbf{I}}, \end{aligned}$$
(15.86)

where \(\varepsilon (r) =\varepsilon (\omega ) \theta (R-r)+ \varepsilon _{0}\theta (r-R)\) is local dielectric function (\(\theta (x)\) is the step-function). The Green dyadic can be split into free space and Mie-scattered parts, \(G_{\mu \nu }(\mathbf{r},\mathbf{r}')=G^{0}_{\mu \nu }(\mathbf{r},\mathbf{r}')+G^{s}_{\mu \nu }(\mathbf{r},\mathbf{r'})\), where the free-space Green dyadic is

$$\begin{aligned} G_{\mu \nu }^{0}(\mathbf{r}-\mathbf{r'}) =\biggl ( \delta _{\mu \nu } - \frac{ \nabla _{\mu } \nabla '_{\nu }}{k^2} \biggr ) g(\mathbf{r}-\mathbf{r}'), \end{aligned}$$
(15.87)

with

$$\begin{aligned} g(\mathbf{r})=\frac{e^{ikr}}{4\pi r} \end{aligned}$$
(15.88)

satisfying a scalar equation

$$\begin{aligned} (\triangle + k^2)g(\mathbf{r})= -\delta (\mathbf{r}). \end{aligned}$$
(15.89)

Consider first the free space part. Its near field expression can be obtained in the long wave approximation, i.e. by expanding in \(kr\ll 1\). In the first order,

$$\begin{aligned} G^{0}_{\mu \nu }(\mathbf{r})=\frac{1}{4 \pi k^2 r^3} \Bigl [\frac{3 \mathbf{r}_{\mu } \mathbf{r}_{\nu }}{r ^2} - \delta _{\mu \nu } \Bigr ] + \dfrac{ik}{6\pi }\delta _{\mu \nu }. \end{aligned}$$
(15.90)

In the far field limit, i.e., \(kr\gg 1\) and \(kr'\ll 1\), the free-space part can be expanded via Bessel functions,

$$\begin{aligned} \frac{e^{ik|r-r'|}}{4\pi |r-r'|} = ik \sum _{lm} j_l (kr') h_l(kr) Y_{lm} (r) Y^{*}_{lm}(r'), \end{aligned}$$
(15.91)

which are approximated as

$$\begin{aligned} j_l(kr')=\frac{(kr')^l}{(2l+1)!!}, \quad h_l(kr)=(-i)^{l+1} \frac{e^{ikr}}{kr}, \end{aligned}$$
(15.92)

yielding

$$\begin{aligned} G_{\mu \nu }^{0}(\mathbf{r},\mathbf{r}')=\Bigl (\delta _{\mu \nu }&-\frac{1}{k^2} {\nabla _{\mu } \nabla _{\nu }'}\Bigr ) \frac{e^{ikr}}{r} \biggl [\frac{1}{4\pi } \nonumber \\&- \frac{ikr'}{3} \sum _m Y_{1m} (\hat{\mathbf{r}}) Y^{*}_{1m} (\hat{\mathbf{r}}')\biggr ]. \end{aligned}$$
(15.93)

After differentiation, the far field asymptotics takes the form

$$\begin{aligned} G^{0}_{\mu \nu }(\mathbf{r},\mathbf{r}')= \frac{e^{ik r}}{4\pi r} \biggl [ \delta _{\mu \nu } -\frac{4 \pi }{3} \sum _{m} \hat{\mathbf{r}}_{\mu } Y_{1m}(\hat{\mathbf{r}})\chi _{1m}^{\nu *}(\mathbf{r}') \biggr ], \end{aligned}$$
(15.94)

where we introduced \(\chi _{lm}^{\mu }(\mathbf{r})=\nabla _{\mu } [r^{l} Y_{lm}(\hat{\mathbf{r}})\) and \(\psi _{lm}^{\mu }(\mathbf{r})=\nabla _{\mu } [r^{-l-1}Y_{lm}(\hat{\mathbf{r}})]\).

Now turn to the scattered part of the Green dyadic derived from solution of Mie problem for electromagnetic wave scattered on single sphere,

$$\begin{aligned} G^{s}_{\mu \nu }(\mathbf{r},\mathbf{r'},\mathbf{k})&=i k \sum _{lm} \bigl [a_{l} N^{\mu }_{lm}(\mathbf{r})N^{\nu }_{lm}(\mathbf{r}') \nonumber \\&\qquad \qquad \quad + b_{l} M^{\mu }_{lm}(\mathbf{r})M^{\nu }_{lm}(\mathbf{r}') \bigr ], \end{aligned}$$
(15.95)

where the first and second terms are electric and magnetic contributions and \(a_{l}\) and \(b_{l}\) are the Mie coefficients. In the long wave approximation, \(kR\ll 1\), the magnetic contribution in Eq.(15.95) can be neglected as \(b_{l}\ll 1\) [2427]. The Mie coefficient \(a_{l}\) has a form

$$\begin{aligned} a_{l}=\frac{\varepsilon _{0} j_{l}(\rho _{0}) [\rho j_{l}(\rho )]'- \varepsilon j_{l}(\rho ) [\rho _{0} j_{l}(\rho _{0})]'}{\varepsilon _{0} h_{l}(\rho _{0}) [\rho j_{l}(\rho )]'- \varepsilon j_{l}(\rho ) [\rho _{0} h_{l}(\rho _{0})]'} \end{aligned}$$
(15.96)

where \(\rho _{i}=k_{i}R, k_i=\frac{\omega }{c} \sqrt{\varepsilon _i}\), and \(i=(\varepsilon ,\varepsilon _0)\). For \(kR\ll 1\), it becomes

$$\begin{aligned} a_{l}=-i s_{l} \tilde{\alpha }_{l} k^{2l+1}, ~~ s_{l}=\frac{l+1}{l(2l+1) [(2l-1)!!]^2}, \end{aligned}$$
(15.97)

where

$$\begin{aligned} \tilde{\alpha }_{l}=\frac{\alpha _{l}}{1-i s_{l} k^{2l+1} \alpha _{l}}, \end{aligned}$$
(15.98)

is NP multipolar polarizability that accounts for plasmon radiative decay, and

$$\begin{aligned} \alpha _{l}=R^{2l+1} \frac{l(\varepsilon -\varepsilon _0)}{l\varepsilon +(l+1)\varepsilon _0}, \end{aligned}$$
(15.99)

is the standard NP polarizability. The function \(\mathbf{N}_{lm}(\mathbf{r})\) is given by

$$\begin{aligned} \mathbf{N}_{lm}(\mathbf{r}) =\frac{1}{k\sqrt{l(l+1)}} {\varvec{\nabla }} \times \bigl [h^{(1)}_{l}(kr) \mathbf{L} Y_{lm}(\hat{\mathbf{r}})\bigl ], \end{aligned}$$
(15.100)

where \( \mathbf{L} = -i (\mathbf{r} \times {\varvec{\nabla }})\) is angular momentum operator. Using the following identity,

$$\begin{aligned} {\varvec{\nabla }} \times \bigl [h^{(1)}_{l}&(kr) \mathbf{L} Y_{lm}(\hat{\mathbf{r}})\bigl ] = i \mathbf{r} k^2 h^{(1)}_l(kr) Y_{lm}(\hat{\mathbf{r}}) \nonumber \\&+ i {\varvec{\nabla }} \bigl [[kr h^{(1)\prime }_{l}(kr) + h^{(1)}_{l}(kr)] Y_{lm}(\hat{\mathbf{r}})\bigl ], \end{aligned}$$
(15.101)

prime standing for derivative, and expanding \(h^{(1)}_{l}(kr)=j_{l}(kr)+i n_{l}(kr)\) in \(kr\) as

$$\begin{aligned} h^{(1)}_{l}(kr)= \frac{(kr)^{l}}{(2l+1)!!} - i \frac{(2l-1)!!}{(kr)^{l+1}}, \end{aligned}$$
(15.102)

we obtain

$$\begin{aligned} \mathbf{N}_{lm}(kr)= - \frac{1}{k \sqrt{s_{l} (2l+1)}} {\varvec{\nabla }} [\varphi _{l}(kr) Y_{lm}(\hat{\mathbf{r}})], \end{aligned}$$
(15.103)

where

$$\begin{aligned} \varphi _{l}(kr) = \frac{1}{(kr)^{l+1}} - i s_{l} (kr)^{l}. \end{aligned}$$
(15.104)

Thus, for \(kr\ll 1\) and \(kr'\ll 1\), the scattered part of the Green dyadic has the form

$$\begin{aligned} G^{s}_{\mu \nu }(\mathbf{r},\mathbf{r'},\mathbf{k})&\approx i k \sum _{lm} \bigl [a_{l} N^{\mu }_{lm}(kr)N^{\nu }_{lm}(kr')\bigr ] \\&\approx \sum _{lm} \frac{k^{2l} \tilde{\alpha }_{l}}{2l+1} \nabla _{\mu } \bigl [\varphi _{l}(kr) Y_{lm}(\hat{\mathbf{r}})\bigr ] \nabla '_{\nu } \bigl [\varphi _{l}(kr')Y^{*}_{lm}(\hat{\mathbf{r}}')\bigr ]. \nonumber \end{aligned}$$
(15.105)

This expression can be further simplified by substituting \(\tilde{\alpha }_{l}=\bar{\alpha }_{l}+ i s_{l} k^{2l+1} |\tilde{\alpha }_{l}|^2\), where \(\bar{\alpha }_{l}= \alpha _{l}|1-is_{l} k^{2l+1}\alpha _{l}|^{-2}\), and keeping the first two powers of \(k\)

$$\begin{aligned} G^{s}_{\mu \nu }(\mathbf{r},\mathbf{r'}) =&\dfrac{1}{k^2}\sum _{lm} \frac{\bar{\alpha }_{l}}{(2l+1)} \psi _{lm}^{\mu }(\mathbf{r})\psi _{lm}^{\nu *}(\mathbf{r}') \nonumber \\&- i\frac{ks_{1}}{3} \sum _{m=-1}^{1} \Bigl [\tilde{\alpha }_{1} \bigl [\psi _{1m}^{\mu }(\mathbf{r})\chi _{1m}^{\nu *}(\mathbf{r}') + \chi _{1m}^{\mu } (\mathbf{r})\psi _{1m}^{\nu *}(\mathbf{r}')\bigr ] \nonumber \\&-|\tilde{\alpha }_{1}|^2 \psi _{1m}^{\mu }(\mathbf{r})\psi _{1m}^{\nu *}(\mathbf{r}')\Bigr ], \end{aligned}$$
(15.106)

which, after adding the free-space part of the Green dyadic and neglecting plasmon radiative decay, leads to Eq. (15.12).

For \(kr\gg 1\), with help of Eqs. (15.92), (15.100), and (15.101), we easily obtain

$$\begin{aligned} \mathbf{N}_{lm}(\mathbf{r})=-\frac{(-i)^{l+1} e^{ikr}}{k \sqrt{l(l+1)}} {\varvec{\nabla }} Y_{lm}(\hat{\mathbf{r}}), \end{aligned}$$
(15.107)

and combining this expression with Eq. (15.103), we obtain the far field Green dyadic (i.e., \(kr\gg 1\) and \(kr'\ll 1\))

$$\begin{aligned} G^{s}_{\mu \nu }(\mathbf{r},\mathbf{r'})=-\frac{\tilde{\alpha }_1}{3} \sum _{m=-1}^{1} e^{ikr} \bigl [ \nabla _{\mu } Y_{1m}(\hat{\mathbf{r}})\bigr ] \psi _{1m}^{\nu *}(\mathbf{r'}), \end{aligned}$$
(15.108)

where we set \(l=1\).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pustovit, V.N., Shahbazyan, T.V. (2013). Cooperative Effects in Plasmonics. In: Shahbazyan, T., Stockman, M. (eds) Plasmonics: Theory and Applications. Challenges and Advances in Computational Chemistry and Physics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7805-4_15

Download citation

Publish with us

Policies and ethics