Skip to main content

Media and Conditions for the Growth of Halophilic and Halotolerant Bacteria and Archaea

  • Chapter

Abstract

An awareness of haloarchaea has existed since ancient times, with published descriptions of “red waters” associated with salt mining, the “red heat” of salted hides, and the “reddening” of salted fish (Bass-Becking 1931; Kurlansky 2002). For a society without refrigeration, the economic impact of codfish deterioration garnered particular attention, with Farlow (1878) oft cited as the first to publish on what were presumably haloarchaea . The early growth media of Eddington (1887) and Le Dantec (1891) reflected natural high-protein substrates, using beef peptone, gelatins, and fish broths, solidified with agar, flour, or bread paste. While some early studies used pieces of fish soaked in various brines (Høye 1908; Klebahn 1919; Harrison and Kennedy 1922), many included ground cod or a cod broth, or media based on beef bouillon or beef gelatin (Beckwith 1911; Bitting 1911; Becker 1912; Kellerman 1915; Clayton and Gibbs 1927; Velu 1929). Milk was introduced as a preferred organic constituent by Bitting (1911) and Kellerman (1915), but was popularized by Lockhead (1934). Rice flour, wheat flour or whole rice grains often were used as gelling agents (Clayton and Gibbs 1927; Robertson 1931; Boury 1934; Gibbons 1937). Silica gel was suggested to reduce organic content of solidified media (Hanks and Weintraub 1936; Moore 1940 1941). It was recognized that alkaline culture conditions were useful for growing certain halophilic microbes (Stather and Liebscher 1929) and that halophilic obligate anaerobes could be grown on a cooked meat medium (Baumgartner 1937). The seminal paper of Harrison and Kennedy (1922) focused on the difficulties of growing the organisms responsible for red discolorations on salted fish, trying many media recipes including those based on cider, milk, broths, sugars, and potatoes. While the red organisms proved difficult to isolate, as an aside, the paper discusses a broad diversity of non-red halophilic organisms that were more easily isolated on these media.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abram D, Gibbons NE (1960) Turbidity of suspensions and morphology of red halophilic bacteria as influenced by sodium chloride concentration. Can J Microbiol 6:535–543

    Article  CAS  PubMed  Google Scholar 

  • Abram D, Gibbons NE (1961) The effect of chlorides of monovalent cations, urea, detergents, and heat on morphology and the turbidity of suspensions of red halophilic bacteria. Can J Microbiol 7:741–750

    Article  CAS  PubMed  Google Scholar 

  • Adams R, Bygraves J, Kogut M, Russell NJ (1987) The role of osmotic effects in haloadaptation of Vibrio costicola. J Gen Microbiol 133:1861–1870

    CAS  PubMed  Google Scholar 

  • Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328

    Article  CAS  PubMed  Google Scholar 

  • Anderson GC (1958) Some limnological features of a shallow saline meromictic lake. Limnol Oceanogr 3:259–270

    Article  Google Scholar 

  • Baas-Becking LGM (1931) Historical notes on salt and salt-manufacture. Sci Monthly 32:434–446

    Google Scholar 

  • Baumgartner JG (1937) The salt limits and thermal stability of a new species of anaerobic halophile. Food Res 2:321–329

    Article  CAS  Google Scholar 

  • Becker H (1912) Die Salzflecken. Collegium 1912:408–418

    Google Scholar 

  • Beckwith TD (1911) The bacteriological cause of the reddening of cod and other allied fishes. Zentr Bakteriol Parasitenk Orig, Abt I 60:351–354

    Google Scholar 

  • Ben-Amotz A, Avron M (1983) On the factors which determine massive carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263

    Article  CAS  Google Scholar 

  • Bertullo VH (1960–1961) La saponina como agente selectivo en la diferenciación de las bacteria rojas halofílicas. An Fac Vet Uruguay (Montevideo) 10:19–22

    Google Scholar 

  • Bitting AW (1911) Preparation of the cod and other salt fish for the market, including a bacteriological study of the causes of reddening. US Dept Agric Bur Chem Bull 133:63

    Google Scholar 

  • Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    CAS  Google Scholar 

  • Boring J, Kushner DJ, Gibbons NE (1963) Specificity of the salt requirement of Halobacteriumcutirubrum. Can J Microbiol 2:143–154

    Article  Google Scholar 

  • Boury M (1934) Études sur le salage du poisson. Rev Trav Off Pêches Marit 7:195–222

    Google Scholar 

  • Brown AD (1963) The peripheral structures of Gram-negative bacteria. IV. The cation-sensitive dissolution of the cell membrane of the halophilic bacterium, Halobacterium halobium. Biochim Biophys Acta 75:425–435

    CAS  PubMed  Google Scholar 

  • Brown HJ, Gibbons NE (1955) The effect of magnesium, potassium, and iron on the growth and morphology of red halophilic bacteria. Can J Microbiol 1:486–494

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  CAS  PubMed  Google Scholar 

  • Cantrell SA, Casillas-Martínez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycolog Res 110:962–970

    Article  CAS  Google Scholar 

  • Caton TM, Witte LR, Ngyuen HD, Buchheim JA, Buchheim MA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol 48:449–462

    Article  CAS  PubMed  Google Scholar 

  • Caton TM, Caton IR, Witte LR, Schneegurt MA (2009) Archaeal diversity at the Great Salt Plains of Oklahoma described by cultivation and molecular analyses. Microb Ecol 58:519–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayol J-L, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia J-L (1994) Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Bacteriol 44:534–540

    Article  CAS  PubMed  Google Scholar 

  • Cayol J-L, Ducerf S, Patel BKC, Garcia J-L, Thomas P, Ollivier B (2000) Thermohalobacter berrensis gen. nov., sp. nov., a thermophilic, strictly halophilic bacterium from a solar saltern. Int J Syst Evol Microbiol 50:559–564

    Article  CAS  PubMed  Google Scholar 

  • Chan K, Leung OC (1979) Nutrition and growth of the moderately halophilic bacteria Micrococcus morrhuae K-17 and Micrococcus luteus K-15. Microbios 25:71–84

    CAS  PubMed  Google Scholar 

  • Clayton W, Gibbs WE (1927) Examination for halophilic micro-organisms. Analyst 52:395–397

    Article  CAS  Google Scholar 

  • Crisler JD, Kilmer BR, Rowe K, Cunderla B, Madu BE, Schneegurt MA (2010) Isolation and characterization of microbes from Basque Lake, BC, and Hot Lake, WA, environments with high magnesium sulfate concentrations. Trans KS Acad Sci 113:122–123 [abstr]

    Google Scholar 

  • Crisler JD, Newville TM, Chen F, Clark BC, Schneegurt MA (2012) Bacterial growth at the high concentrations of magnesium sulfate found in Martian soils. Astrobiology 12:98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dor I, Hornoff M (1985) Salinity-temperature relations and morphotypes of a mixed population of coccoid cyanobacteria from a hot, hypersaline pond in Israel. Mar Ecol 6:13–25

    Article  Google Scholar 

  • Ducharme L, Matheson AT, Yaguchi M, Visentin LP (1972) Utilization of amino acids by Halobacterium cutirubrum in chemically defined medium. Can J Microbiol 18:1349–1351

    Article  CAS  PubMed  Google Scholar 

  • Dundas ID, Larsen H (1962) The physiological role of the carotenoid pigments of Halobacterium salinarium. Arch Mikrobiol 44:233–239

    Article  CAS  Google Scholar 

  • Dundas ID, Srinivasan VR, Halvorson HO (1963) A chemically defined medium for Halobacterium salinarium strain 1. Can J Microbiol 9:619–624

    Article  CAS  Google Scholar 

  • Dussault HP (1956) Study of red halophilic bacteria in solar salt and salted fish. I. Effect of Bacto-oxgall. J Fish Res Bd 13:183–194

    Google Scholar 

  • Dussault HP, LaChance RA (1952) Improved medium for red halophilic bacteria from salt fish. J Fish Res Bd Can 9:157–163

    Article  Google Scholar 

  • Eddington A (1887) An investigation into the nature of the organisms present in “red” cod, and as to the cause of the red colouration. Appl Fish Bd Scot Ann Rpt 6:207–214

    Google Scholar 

  • Eimhjellen K (1965) Isolation of extremely halophilic bacteria. Zentr Bakteriol Parasit Infek Hyg 1. Abt Orig 1:126–137

    Google Scholar 

  • Esteban GF, Finlay BJ (2003) Cryptic ciliates in a hypersaline lagoon. Protist 154:411–418

    Article  PubMed  Google Scholar 

  • Farlow WG (1878) On the nature of the peculiar reddening of salted codfish during the summer season (1878). U.S. Fish Comm., Report of the Commissioner for 1878, pp 969–973

    Google Scholar 

  • Flannery WL (1955) Synthetic media for two nonpigmented obligate halophilic bacteria. Bacteriol Proc 55:26

    Google Scholar 

  • Flannery WL (1956) Current status of knowledge of halophilic bacteria. Bacteriol Rev 20:49–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flannery WL, Kennedy DM (1962) The nutrition of Vibriocosticolus. I. A simplified synthetic medium. Can J Microbiol 8:923–928

    Article  CAS  Google Scholar 

  • Flannery WL, Doetsch RN, Hansen PA (1952) Salt desideratum of Vibrio costicolus, an obligate halophilic bacterium. I. Ionic replacement of sodium chloride requirement. J Bacteriol 64:713–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster IS, King PL, Hyde BC, Southam G (2010) Characterization of halophiles in natural MgSO4 salts and laboratory enrichment samples: Astrobiological implications for Mars. Planet Space Sci 58:599–615

    Article  CAS  Google Scholar 

  • Forsyth MP, Kushner DJ (1970) Nutrition and distribution of salt response in populations of moderately halophilic bacteria. Can J Microbiol 16:253–261

    Article  CAS  PubMed  Google Scholar 

  • Franzmann PD, Burton HR, McMeekin TA (1987) Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int J Syst Bacteriol 37:27–34

    Article  Google Scholar 

  • Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE, Stevenson PL, McMeekin TA, Burton HR (1988) Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol 11:20–27

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62:3284–3291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pichel F, Nübel U, Muyzer G (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169:469–482

    Article  CAS  PubMed  Google Scholar 

  • Gibbons NE (1937) Studies on salt fish. 1. Bacteria associated with the reddening of salt fish. J Biol Bd Can 3:70–76

    Article  Google Scholar 

  • Gibbons NE (1969) Isolation, growth and requirements of halophilic bacteria. In: Norris JR, Ribbons DW (eds), Methods in microbiology, vol 3B. Academic Press, New York, pp 169–183

    Google Scholar 

  • Gochnauer MB, Kushner DJ (1969) Growth and nutrition of extremely halophilic bacteria. Can J Microbiol 15:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Goh F, Barrow KD, Burns BP, Neilan BA (2010) Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria. Arch Microbiol 192:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Golikowa SM (1930) Eine Gruppe von obligat halophilen Bakterien, gezüchtet in Substraten mit hohem NaCl-Gehalt. Zentr Bakteriol Parasitenk, Abt II 80:35–41

    CAS  Google Scholar 

  • Grant WD (2004) Life at low water activity. Phil Trans R Soc Lond B 359:1249–1267

    Article  CAS  Google Scholar 

  • Grey VL, Fitt PS (1976) An improved synthetic growth medium for Halobacterium cutirubrum. Can J Microbiol 22:440–442

    Article  CAS  PubMed  Google Scholar 

  • Guffanti AA, Finkelthal O, Hicks DB, Falk L, Sidhu A, Garro A, Krulwich TA (1986) Isolation and characterization of new facultatively alkalophilic strains of Bacillus species. J Bacteriol 167:766–773

    Article  CAS  PubMed  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies on marine plankton diatoms. 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, de Lima Alves F, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813

    Article  CAS  PubMed  Google Scholar 

  • Hammer UT (1986) Saline Lake ecosystems of the world. Junk, Dordrecht

    Google Scholar 

  • Handy FM (1916) An investigation of the mineral deposits of northern Okanogan County. Bulletin 100, State College of Washington, Pullman

    Google Scholar 

  • Hanks J, Weintraub R (1936) The preparation of silicic acid jellies for bacteriological media. J Bacteriol 32:639–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison FC, Kennedy ME (1922) XVI. The discoloration of cured codfish. Trans R Soc Can Sect V:101–152

    Google Scholar 

  • Henley WJ, Major KM, Hironaka JL (2002) Response to salinity and heat stress in two halotolerant chlorophyte algae. J Phycol 38:757–766

    Article  Google Scholar 

  • Hartmann R, Sickinger H-D, Oesterhelt D (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77:3821–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess E (1942) Studies on salt fish VII. Red halophilic bacteria in seawater and fish slime and intestines. J Fish Res Bd Can 5:438–439

    Article  Google Scholar 

  • Hochstein LI (1988) The physiology and metabolism of the extremely halophilic bacteria. In: Rodriguez-Valera F (ed), Halophilic bacteria, vol. 2. CRC Press, Boca Raton, FL, pp 67–84

    Google Scholar 

  • Hof T (1935) Investigations concerning bacterial life in strong brines. Rec Trav Bot Neerl 32:92–173

    Google Scholar 

  • Horowitz-Wlassowa LM (1931) Über die Rotfärbung gesalzener Därme (“der rote Hund”). Zentr Bakteriol Parasitenk, Abt II 85:12–18

    Google Scholar 

  • Høye K (1908) Untersuchungen über die Schimmelbildung des Bergfisches. Bergens Mus Aarbog 4:29

    Google Scholar 

  • Ingram M (1957) Micro-organisms resisting high concentrations of sugars or salt. Symp Soc Gen Microbiol 7:90–133

    Google Scholar 

  • Ishida Y (1970) Growth behavior of halobacteria in relation to concentration of NaCl and temperature of environments. Bull Jp Soc Sci Fish 36:397–401

    Article  Google Scholar 

  • Ishida Y, Fujii T (1970) Isolation of halophilic and halotolerant bacteria from solar salt. Bull Jp Soc Sci Fish 36:391–396

    Article  Google Scholar 

  • Javor BJ (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28:153–159

    Article  CAS  Google Scholar 

  • Javor BJ (1984) Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl Environ Microbiol 48:352–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javor B, Requadt C, Stoeckenius W (1982) Box-shaped halophilic bacteria. J Bacteriol 151:1532–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juez G (1988) Taxonomy of extremely halophilic archaebacteria. In: Rodriguez-Valera F (ed), Halophilic Bacteria, vol. 2, CRC Press, Boca Raton, FL, pp 3–24

    Google Scholar 

  • Kamekura M, Onishi H (1982) Cell-associated cations of the moderate halophile Micrococcus variansi ssp. halophilus grown in media of high concentrations of LiCl, NaCl, KCl, RbCl, or CsCl. Can J Microbiol 28:155–161

    Article  CAS  Google Scholar 

  • Kamekura M, Dyall-Smith ML (1995) Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrubacterium and Natrialba. J Gen Appl Microbiol 41:333–350

    Article  CAS  Google Scholar 

  • Kamekura M, Wallace R, Hipkiss AR, Kushner DJ (1985) Growth of Vibrio costicola and other moderate halophiles in a chemically defined minimal medium. Can J Microbiol 31:870–872

    Article  CAS  PubMed  Google Scholar 

  • Kamekura M, Oesterhelt D, Wallace R, Anderson P, Kushner DJ (1988) Lysis of halobacteria in Bacto-Peptone by bile acids. Appl Environ Microbiol 54:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai H, Kobayashi T, Aono R, Kudo T (1995) Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Bacteriol 45:762–766

    Article  CAS  Google Scholar 

  • Katznelson H, White AH (1950) Nutritional requirements of Pseudomonas nigrifaciens as related to growth and pigment production. Can J Res Sec C 28:706–715

    Article  Google Scholar 

  • Katznelson H, Lockhead AG (1952) Growth factor requirements of halophilic bacteria. J Bacteriol 64:97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kauri T, Wallace R, Kushner DJ (1990) Nutrition of the halophilic archaebacterium, Haloferax volcanii. Syst Appl Microbiol 13:14–18

    Article  CAS  Google Scholar 

  • Kellerman KF (1915) Micrococci causing red discoloration of salted codfish. Zentr Bakteriol Parasitenk, Abt II 42:398–402

    Google Scholar 

  • Kirkwood AE, Henley WJ (2006) Algal community structure and halotolerance as related to the extreme conditions of a terrestrial, hypersaline environment. J Phycol 42:537–547

    Article  CAS  Google Scholar 

  • Klebahn H (1919) Die Schädlinge des Klippfisches. Ein Beitrag zur Kenntnis der salzliebenden Organismen. Mitt Inst Allg Bot Hamb 4:11–69

    Google Scholar 

  • Kobayashi T, Kanai H, Hayashi T, Akiba T, Akaboshi R, Horikoshi K (1992) Haloalkaliphilic maltotriose-forming α-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J Bacteriol 174:3439–3444

    CAS  PubMed  Google Scholar 

  • Kono M, Taniguchi S (1960) Hydroxylamine reductase of a halotolerant Micrococcus. Biochim Biophys Acta 43:419–430

    Article  CAS  PubMed  Google Scholar 

  • Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Microbiology 60:596–601

    Google Scholar 

  • Kurlansky M (2002) Salt: A world history. Walker Publishing Co., New York

    Google Scholar 

  • Kushner DJ (1968) Halophilic bacteria. Adv Appl Microbiol 10:73–99

    Article  CAS  PubMed  Google Scholar 

  • Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed), Microbial life in extreme environments. Academic Press, London, pp 317–368

    Google Scholar 

  • Kushner DJ (1985) The halobacteriaceae. In: The bacteria, vol. 8. Academic Press, New York, pp 171–214

    Google Scholar 

  • Kushner DJ (1993) Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein L (eds), The biology of halophilic bacteria. CRC Press, Boca Raton, FL, pp 87–103

    Google Scholar 

  • Kushner DJ, Bayley ST (1963) The effect of pH on surface structure and morphology of the extreme halophile, Halobacterium cutirubrum. Can J Microbiol 9:53–63

    Article  CAS  Google Scholar 

  • Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. In: Rodriguez-Valera F (ed), Halophilic bacteria, vol. 1. CRC Press, Boca Raton, FL, pp 109–138

    Google Scholar 

  • Kushwaha SC, Juez-Perez G, Rodriguez-Valera F, Kates M, Kushner DJ (1982) Survey of lipids of a new group of extremely halophilic bacteria from salt ponds in Spain. Can J Microbiol 28:1365–1372

    Article  CAS  Google Scholar 

  • La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, Borghini M, Oliveri E, Mazzola S, L’Haridon S, Toffin L, Genovese L, Ferrer M, Giuliano L, Gloyshin PN, Yakimov MM (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings. Environ Microbiol 13:2250–2268

    Article  PubMed  Google Scholar 

  • Laiz L, Recio D, Hermosin B, Saiz-Jimenez C (2000) Microbial communities in salt efflorescences. In: Ciferri O, Tiano P, Mastromei G (eds), Of microbes and art: The role of microbial communities in the degradation and protection of cultural heritage. Kluwer, New York, pp 77–88

    Chapter  Google Scholar 

  • Larsen H (1962) Halophilism. In: The bacteria, vol. 4. Academic Press, New York, pp 297–342

    Google Scholar 

  • Le Dantec A (1891) Étude de la morue rouge. Ann Inst Pasteur 5:656–667

    Google Scholar 

  • Litzner BR, Caton TM, Schneegurt MA (2006) Carbon substrate utilization, antibiotic sensitivity, and numerical taxonomy of bacterial isolates from the Great Salt Plains of Oklahoma. Arch Microbiol 185:286–296

    Article  CAS  PubMed  Google Scholar 

  • Lobyreva LB, Fel’dman RS, Plakunov VK (1987) Influence of aromatic amino acids on the growth of Halobacterium salinarium and the uptake of [14C]phenylalanine. Mikrobiologiya 56:16–20

    CAS  Google Scholar 

  • Lockhead AG (1934) Bacteriological studies on the red discoloration of salted hides. Can J Res 10:275–286

    Article  Google Scholar 

  • Lortet ML (1892) Researches on the pathogenic microbes of the mud of the Dead Sea. Palest Explor Fund Quart State 1892:48–50

    Article  Google Scholar 

  • MacLeod RA (1965) The question of the existence of specific marine bacteria. Bacteriol Rev 29:9–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madeley JR, Korngold RR, Kushner DJ, Gibbons NE (1967) The lysis of a psychrophilic marine bacterium as studied by microelectrophoresis. Can J Microbiol 13:45–55

    Article  CAS  Google Scholar 

  • Mandrioli P, Saiz-Jimenez C (2002) Biodeterioration: Macromonitoring and microeffects on cultural heritage and the potential benefits of research to society. EC Advanced Study Course Technical Notes, Sessions 7–8, pp 1–5

    Google Scholar 

  • Markovitz A (1961) Method for the selection of bacteria that synthesize uronic acid-containing polysaccharides. J Bacteriol 82:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markovitz A, Sylvan S (1962) Effect of sodium sulfate and magnesium sulfate on heteropolysaccharide synthesis in gram-negative soil bacteria. J Bacteriol 83:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheson AT, Sprott GD, McDonald IJ, Tessier H (1976) Some properties of an unidentified halophile: growth characteristics, internal salt concentration, and morphology. Can J Microbiol 22:780–786

    Article  CAS  PubMed  Google Scholar 

  • Mathrani IM, Boone DR (1985) Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl Environ Microbiol 50:140–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLachlan J (1960) The culture of Dunaliellatertiolecta Butcher—a euryhaline organism. Can J Microbiol 6:367–379

    Article  CAS  Google Scholar 

  • Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J (2007) Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512

    Article  CAS  PubMed  Google Scholar 

  • Mevarech M, Werczberger R (1985) Genetic transfer in Halobacterium volcanii. J Bacteriol 162:461–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minegishi H, Mizuki T, Echigo A, Fukushima T, Kamekura M, Usami R (2008) Acidophilic haloarchaeal strains are isolated from various solar salts. Saline Syst 4:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohr V, Larsen H (1963) On the structural transformations and lysis of Halobacterium salinarium in hypotonic and isotonic solutions. J Gen Microbiol 31:267–280

    Article  CAS  Google Scholar 

  • Montero CG, Ventosa A, Rodriguez-Valera F, Ruiz-Berraquero F (1988) Taxonomic study of non-alkaliphilic halococci. J Gen Microbiol 134:725–732

    Google Scholar 

  • Moore HN (1940) The use of silica gels for the cultivation of halophilic organisms. J Bacteriol 40:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore HN (1941) The use of silica gels for the cultivation of halophilic organisms. II. Quantitative determination. J Bacteriol 41:317–321

    CAS  Google Scholar 

  • Mullakhanbhai MF, Larsen H (1975) Halobacteriumvolcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207–214

    Article  CAS  PubMed  Google Scholar 

  • Niederberger TD, Perreault NN, Tille S, Lollar BS, Lacrampe-Couloume G, Anderson D, Greer CW, Pollard W, Whyte LG (2010) Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J 4:1326–1339

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt HW (2004) Groundwater evolution, authigenic carbonates and sulfates, of the Basque Lake No. 2 basin, Canada. In: Spencer RJ, Chou I-M (eds), Fluid-mineral interactions: A tribute to H.P. Eugster, special publication, vol. 2. Geochemical Society, 1990, pp 355–371

    Google Scholar 

  • Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225

    Article  CAS  PubMed  Google Scholar 

  • Nicholson CA, Fathepure BZ (2006) Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol Lett 245:257–262

    Article  CAS  Google Scholar 

  • Novitsky TJ, Kushner DJ (1975) Influence of temperature and salt concentration on the growth of a facultatively halophilic “Micrococcus” sp. Can J Microbiol 21:107–110

    Article  CAS  PubMed  Google Scholar 

  • Novitsky TJ, Kushner DJ (1976) Planococcus halophilus sp. nov., a facultatively halophilic coccus. Int J Syst Bacteriol 26:53–57

    Article  Google Scholar 

  • Oesterhelt D and Krippahl G (1973) Light inhibition of respiration in Halobacterium halobium. FEBS Lett 36:72–76

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D and Stoeckenius W (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Meth Enzymol 31A:667–678

    Article  Google Scholar 

  • Oesterhelt D and Krippahl G (1983) Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. Ann Microbiol 134B:137–150

    CAS  Google Scholar 

  • Ōmata S, Ueno T, Nakagawa Y (1961) On the color-producing bacteria in soy sause mash. Studies on halophilic bacteria I. Hakko Kogaku Zasshi 39:52–60

    Google Scholar 

  • Onishi H, McCance ME, Gibbons NE (1965) A synthetic medium for extremely halophilic bacteria. Can J Microbiol 11:365–373

    Article  CAS  PubMed  Google Scholar 

  • Onishi H, Fuchi H, Konomi K, Hidaka O, Kamekura M (1980) Isolation and distribution of a variety of halophilic bacteria and their classification by salt-response. Agric Biol Chem 44:1253–1258

    CAS  Google Scholar 

  • Oren A (1983a) Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch Microbiol 136:42–48

    Article  Google Scholar 

  • Oren A (1983b) Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol 33:381–386

    Article  Google Scholar 

  • Oren A (1986) Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobiumpraevalens and Halobacteroides halobius. Can J Microbiol 32:4–9

    Article  CAS  Google Scholar 

  • Oren A (1990) Starch counteracts the inhibitory action of Bacto-Peptone and bile salts in media for the growth of halobacteria. Can J Microbiol 36:299–301

    Article  CAS  Google Scholar 

  • Oren A (1991) Anaerobic growth of halophilic archaeobacteria by reduction of fumarate. J Gen Microbiol 137:1387–1390

    Article  CAS  Google Scholar 

  • Oren A (1994) The ecology of the extremely halophilic archaea. FEMS Microbiol Rev 13:415–440

    Article  CAS  Google Scholar 

  • Oren A (2000) Salts and brines. In: Whitton BA, Potts M (eds), The ecology of cyanobacteria. Their diversity in iome and space. Kluwer, Dordrecht, pp 281–306

    Google Scholar 

  • Oren A, Trüper HG (1990) Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethyamine N-oxide. FEMS Microbiol Lett 70:33–36

    Article  CAS  Google Scholar 

  • Oren A, Weisburg WG, Kessel M, Woese CR (1984) Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Syst Appl Microbiol 5:58–70

    Article  CAS  Google Scholar 

  • Paterek JR, Smith PH (1985) Isolation and characterization of a halophilic methanogen from Great Salt Lake. Appl Environ Microbiol 50:877–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne JI, Sehgal SN, Gibbons NE (1960) Immersion refractometry of some halophilic bacteria. Can J Microbiol 6:9–15

    Article  CAS  Google Scholar 

  • Petter HFM (1931) On bacteria of salted fish. Koninkl Akad Wetenschap 34:1417–1423

    CAS  Google Scholar 

  • Pikuta EV, Hoover RB, Bej AK, Marsic D, Detkova EN, Whitman WB, Krader P (2003) Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California. Extremophiles 7:327–334

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI, Hocking AD (1985) Fungi and food spoilage, 1st ed. Academic Press, Sydney.

    Google Scholar 

  • Plakunov VK, Lobyreva LB (1985) Peculiarities of the transport of aromatic amino acids in extremely halophilic microorganisms. Microbiology 54:308–313

    Google Scholar 

  • Post FJ (1977) The microbial ecology of the Great Salt Lake. Microb Ecol 3:143–165

    Article  CAS  PubMed  Google Scholar 

  • Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105:95–113

    Article  Google Scholar 

  • Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Mikrobiol 25:392–428

    Article  CAS  PubMed  Google Scholar 

  • Quesada E, Ventosa A, Rodriguez-Valera F, Megias L, Ramos-Cormenzana A (1983) Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129:2649–2657

    Google Scholar 

  • Quesada E, Bejar V, Valderrama MJ, Ventosa A, Cormenzana AR (1985) Isolation and char-ac-ter-i-za-tion of moderately halophilic nonmotile rods from different habitats. Microbiología 1:89–96

    CAS  PubMed  Google Scholar 

  • Quesada E, Bejar V, Valderrama MJ, Ramos-Cormenzana A (1987) Growth characteristics and salt requirement of Deleya halophila in a defined medium. Curr Microbiol 16:21–25

    Article  CAS  Google Scholar 

  • Ratton JJL (1877) A handbook of common salt. Higginbotham, Madras.

    Google Scholar 

  • Robertson ME (1931) A note on the cause of certain red coloration on salted hides and a comparison of growth and survival of halophilic or salt-loving organisms and some ordinary organisms of dirt putrefaction on media of varying salt concentrations. J Hyg 21:84–95

    Article  Google Scholar 

  • Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1980) Isolation of extremely hal-o-phil-ic bacteria able to grow in defined inorganic media with single carbon sources. J Gen Microbiol 119:535–538

    Google Scholar 

  • Rodriguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb Ecol 11:107–115

    Article  CAS  PubMed  Google Scholar 

  • Rubentschik L (1929) Zur Nitrifikation beihohen Salzkonzentrationen. Zentr Bakteriol Parasitenk, Abt II 77:1–8

    Google Scholar 

  • Sass AM, McKew BA, Sass H, Fichtel J, Timmis KN, McGenity TJ (2008) Diversity of Bacillus-like organisms from deep-sea hypersaline anoxic sediments. Saline Syst 4:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneegurt MA, Wedel AN, Pokorski EW (2004) Safe, low-cost, salty microbiology for the classroom. Sci Teacher 71:40–43

    Google Scholar 

  • Schoop G (1935) Obligat halophile Mikroben. Zentr Bakteriol Parasitenk Orig, Abt I 134:14–23

    Google Scholar 

  • Sehgal SN, Gibbons NE (1960) Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6:165–169

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Walsh DA, Bapteste E, Rodriquez-Valera F, Doolittle WF, Papke RT (2007) Evolution of rhodopsin ion pumps in haloarchaea. BMC Evol Biol 7:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiio I, Maruo B, Akabori S (1956) Transaminases in a halophilic bacterium No. 101. J Biochem 43:779–784

    Article  CAS  Google Scholar 

  • Smith FB (1938) An investigation of a taint in the rib bones of bacon. The determination of halophilic vibrios. Proc R Soc Queensland 49:29–52

    Google Scholar 

  • Soliman GSH, Trüper HG (1982) Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentr Bakteriol Parasitenk Infek Hyg, Abt 1 3:318–329

    CAS  Google Scholar 

  • Sorokin DYu, Kovaleva OL, Tourova TP, Muyzer G (2010) Thiohalobacter thiocyanaticus gen. nov., sp. nov., a moderately halophilic, sulfur-oxidizing gammproteobacterium from hypersaline lakes, that utilizes thiocyanate. Int J Syst Evol Microbiol 60:444–450

    Article  CAS  PubMed  Google Scholar 

  • Starr R, Zeikus J (1987) UTEX—the culture collection of algae at the University of Texas at Austin. J Phycol 23(Suppl):1–47

    Google Scholar 

  • Stather F, Liebscher E (1929) Zur Bakteriologie des Rotwerdens gesalzener Rohhäute. 4. Mitteilung über häute- und lederschäden. Collegium 713:437–450

    Google Scholar 

  • Stuart LS (1940) Effect of protein concentration and cysteine on growth of halophilic bacteria. J Agric Res 61:267–275

    CAS  Google Scholar 

  • Stuart LS, Frey RW, James LH (1933) Microbiological studies of salt in relation to the reddening of salted hides. USDA Tech Bull 383

    Google Scholar 

  • Subov NN (1931) Oceanographical tables. USSR Oceanographical Institute, Hydrometeorological Communications, Moscow

    Google Scholar 

  • Tardy-Jacquenod C, Magot M, Patel BKC, Matherton R, Caumette P (1998) Desulfotomaculum hal-o-phil-um sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int J Syst Bacteriol 48:333–338

    Article  PubMed  Google Scholar 

  • Tindall DR, Yopp JH, Miller DM, Schmid WE (1978) Physico-chemical parameters governing the growth of Aphanothece halophytica (Chroococcales) in hypersaline media. Phycologia 17:179–185

    Article  CAS  Google Scholar 

  • Tindall BJ, Mills AA, Grant WD (1980) An alkalophilic red halophilic bacterium with low magnesium requirement from a Kenyan soda lake. J Gen Microbiol 116:257–260

    Google Scholar 

  • Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5:41–57

    Article  Google Scholar 

  • Tomlinson GA, Hochstein LI (1972a) Isolation of carbohydrate-metabolizing, extremely halophilic bacteria. Can J Microbiol 18:698–701

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson GA, Hochstein LI (1972b) Studies on acid production during carbohydrate metabolism by extremely halophilic bacteria. Can J Microbiol 18:1973–1976

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson GA, Hochstein LI (1976) Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing extremely halophilic bacterium. Can J Microbiol 22:587–591

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson GA, Jahnke LL, Hochstein LI (1986) Halobacterium dentrificans sp. nov., an extremely halophilic denitrifying bacterium. Int J Syst Bacteriol 36:66–70

    Article  CAS  PubMed  Google Scholar 

  • Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99

    Article  Google Scholar 

  • Van Der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  PubMed  CAS  Google Scholar 

  • Velu H (1929) Origine de l’agent du rouge des salaisons. Compt Rend Soc Biol 100:1094–1095

    Google Scholar 

  • Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968

    Google Scholar 

  • Volcani BE (1944) The microorganisms of the Dead Sea. In: Daniel Sieff Research Institute (ed) Papers Collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann. Daniel Sieff Research Institute, Rehovoth, pp 71–85

    Google Scholar 

  • Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. Crit Rev Microbiol 14:311–356

    Article  CAS  PubMed  Google Scholar 

  • Vreeland RH, Martin EL (1980) Growth characteristics, effects of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata. Can J Microbiol 26:746–752

    Article  CAS  Google Scholar 

  • Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonaselongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495

    Article  CAS  Google Scholar 

  • Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplexcarlsbadense gen. nov., sp. nov., a unique halophilic archaeon with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452

    Article  CAS  PubMed  Google Scholar 

  • Wais AC (1988) Recovery of halophilic archaebacteria from natural environments. FEMS Microbiol Ecol 53:211–216

    Article  Google Scholar 

  • Weber MM (1949) Red halophilic microorganisms: A problem in the biochemical foundation of an ecological specialization. Biolog Rev 1:9–14

    Google Scholar 

  • Yopp JH, Tindall DR, Miller DM, Schmid WE (1978) Isolation, purification and evidence for a halophilic nature of the blue-green alga Aphanothece halophytica Fremy (Chroococcales) Phycologia 17:172–178

    Article  CAS  Google Scholar 

  • Yu IK, Kawamura F (1987) Halomethanococcus doii gen. nov., sp. nov.: An obligately halophilic methanogenic bacterium from solar salt ponds. J Gen Appl Microbiol 33:303–310

    Article  CAS  Google Scholar 

  • Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149

    Article  CAS  PubMed  Google Scholar 

  • Zhilina TN (1986) Methanogenic bacteria from hypersaline environments. Syst Appl Microbiol 7:216–222

    Article  CAS  Google Scholar 

  • ZoBell CE (1946) Marine microbiology. A monograph on hydrobacteriology. Chronica Botanica Co., Waltham

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Schneegurt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schneegurt, M.A. (2012). Media and Conditions for the Growth of Halophilic and Halotolerant Bacteria and Archaea. In: Vreeland, R.H. (eds) Advances in Understanding the Biology of Halophilic Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5539-0_2

Download citation

Publish with us

Policies and ethics