Skip to main content

Advanced Mass Spectrometry Methods for Analysis of Lipids from Photosynthetic Organisms

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 30))

Summary

The analysis of lipids is technically very challenging, not only due to the large number of various classes of compounds provided by the cell, but also due to the enormous heterogeneity of these various classes. Especially plants with their large pigment content and their high degree of polyunsaturated acyl residues make lipid analysis in this system even more complicated. Due to this high complexity, more and more sophisticated large-scale lipid-analysis systems have been developed, intended for the analysis of the so-called “lipidome”, that is the entire lipid composition of a cell or a whole organism. These methods often consist of various building blocks, which show interlaced modularity. The two basic elements of a lipidomic analysis are an efficient extraction procedure and a sensitive detection system. In addition to these two basic elements, depending on the analytical question, additional separation and sample purification procedures can be introduced. Mass spectrometry (MS)-based techniques are at the forefront of lipidomic analysis. These extremely sensitive and accurate detection methods are applied to investigate all kinds of lipid. Their application, in combination with various plant-specific techniques of extraction and separation, including solid-phase extraction, thin-layer chromatography and high-performance liquid chromatography are presented in this chapter. Most of the MS-based technologies for lipid profiling of partially polar lipids rely on electrospray ionization, while more apolar lipids, like sterols, can be ionized by techniques, such as atmospheric pressure chemical ionization. A number of various applications employing these mass spectrometric methods will be discussed. Finally combinations of various separation and detection technologies, so-called hyphenated approaches, such as high-performance liquid chromatography coupled to mass spectrometry or gas chromatography coupled to time of flight or quad-rupole mass spectrometry, are introduced and their suitability for lipid analysis are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ASG:

Acetylated steryl glycosides

APCI:

Atmospheric pressure chemical ionization

APPI:

Atmospheric pressure photoionization

CAD:

Charged aerosol detector

Cer:

Ceramide

DGTA:

Diacylglyceryl-hydroxymethyltrimethylalanine

DGTS:

Diacylglyceryltri-methylhomoserine

DGDG:

Digalactosyl diacylglycerol

ESI:

Electrospray ionization

ELSD:

Evaporative light scattering detector

FID:

Flame ionization detection

GC:

Gas chro-matography

GlcCer:

Glycosyl ceramide

GIPC:

Glycosyl inositol phosphatidyl ceramide

HPLC:

High-performance liquid chromatography

LCB:

Long-chain base

MS:

Mass spectrometry

MALDI:

Matrix assisted laser desorption ioni-zation

MGDG:

Monogalactosyl diacylglycerol

NPLC:

Normal phase liquid chromatography

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PS:

Phos-phatidylserine

RPLC:

Reversed-phase liquid chromatogra-phy

SPE:

Solid phase extraction

SG:

Steryl glycosides

SQDG:

Sulfoquinovosyl diacylglycerol

TLC:

Thin-layer chromatography

UV:

Ultraviolet

X:Y:

X number of carbon atoms and Y number of double bonds

References

  • Bavaro L, Catucci L, Depalo N, Ventrella A, Corcelli A and Agostiano A (2007) Lipid content in higher plants under osmotic stress. Bioelectrochemistry 70: 12–17

    Article  PubMed  CAS  Google Scholar 

  • Breton L, Serkiz B, Volland JP and Lepagnol J (1989) A new rapid method for phospholipid separation by high-performance liquid chromatography with light-scattering detection. J Chromatogr 497: 243–249

    Article  PubMed  CAS  Google Scholar 

  • Brügger B, Erben G, Sandhoff R, Wieland FT and Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 94: 2339–2344

    Article  PubMed  Google Scholar 

  • Christie WW (1992) Solid-phase extraction columns in the analysis of lipids. In: Christie WW (ed) Advances in Lipid Methodology—One. Oily Press, Dundee, pp. 1–17

    Google Scholar 

  • Christie WW and Urwin RA (1995) Separation of lipid classes from plant tissues by high-performance liquid chromatography on chemically bonded stationary phases. J High Resol Chromatogr 18: 97–100

    Article  CAS  Google Scholar 

  • Christie WW, Gill S, Itabashi Y, Nordbäck J, Sanda S and Slabas AR (1998) New procedures for rapid screening of leaf lipid components from Arabidopsis. Phytochem Anal 9: 53–57

    Article  CAS  Google Scholar 

  • Clarke NG and Dawson RMC (1981) Alkaline O→N-transacylation: a new method for the quantitative deacyla-tion of phospholipids. Biochem J 195: 301–306

    PubMed  CAS  Google Scholar 

  • Deschamps FS, Chaminade P, Ferrier D and Baillet A (2001) Assessment of the retention properties of poly(vinyl alcohol) stationary phase for lipid class profiling in liquid chromatography. J Chromatogr A 928: 127–137

    Article  PubMed  CAS  Google Scholar 

  • Destaillats F, Sebedio JL, Berdeaux O, Juaneda P and Angers P (2005) Gas chromatography-mass spectrometry determination of metabolites of conjugated cis-9, trans-11, cis-15 18:3 fatty acid. J Chromatogr B 820: 15–20

    Article  CAS  Google Scholar 

  • Devaiah SP, Roth MR, Baughman E, Li M, Tamura P, Jean-notte R, Welti R and Wang X (2006) Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsisand a PHOSPHOLIPASE D1knockout mutant. Phytochemistry 67: 1907–1924

    Article  PubMed  CAS  Google Scholar 

  • Dittmer JC and Lester RL (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromato-grams. J Lipid Res 5: 126–127

    CAS  Google Scholar 

  • Ejsing CS (2006) Molecular characterization of the lipidome by mass spectrometry. Available at http://hsss.slub-dresden.de/deds/access/hsss.urlmapping.MappingServlet?id= 1172770038324–9146. Accessed August 25, 2008

  • Esch SW, Tamura P, Sparks AA, Roth MR, Devaiah SP, Heinz E, Wang XM, Williams TD and Welti R (2007) Rapid characterization of the fatty acyl composition of complex lipids by collision-induced dissociation time-of-flight mass spectrometry. J Lipid Res 48: 235–241

    Article  PubMed  CAS  Google Scholar 

  • Folch J, Lees M and Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497–509

    PubMed  CAS  Google Scholar 

  • Guan Z, Grünler J, Piao S and Sindelar PJ (2001) Separation and quantification of phospholipids and their ether analogues by high-performance liquid chromatography. Anal Biochem 297: 137–143

    Article  PubMed  CAS  Google Scholar 

  • Guil JL, Torija ME, Gimenez JJ and Rodriguez I (1996) Identification of fatty acids in edible wild plants by gas chromatography. J Chromatogr 719: 229–235

    Article  CAS  Google Scholar 

  • Haimi P, Uphoff A, Hermansson M and Somerharju P (2006) Software tools for analysis of mass spectrometric lipidome data. Anal Chem 78: 8324–8331

    Article  PubMed  CAS  Google Scholar 

  • Han X and Gross RW (2003) Global analyses of cellular lipi-domes directly from crude extracts of biological samples by ESI/mass spectrometry: a bridge to lipidomics. J Lipid Res 44: 1071–1079

    Article  PubMed  CAS  Google Scholar 

  • Hauser H and Poupart G (2003) Lipid structure. In: Yeagle PL (ed) The Structure of Biological Membranes. CRC, FL, pp. 1–53

    Google Scholar 

  • Heemskerk JW, Bögemann G, Scheijen MA and Wintermans JF (1986) Separation of chloroplast polar lipids and measurement of galactolipid metabolism by high-performance liquid chromatography. Anal Biochem 154: 85–91

    Article  PubMed  CAS  Google Scholar 

  • Herzog R, Schwudke D and Shevchenko A (2008) LipidX: an integrated software platform for top-down and bottom-up lipidomics, based on de novo interpretation of mass spectra. 41. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie (DGMS), Germany 2008

    Google Scholar 

  • Hillenkamp F, Karas M, Beavis RC and Chait BT (1991) Matrix-assisted laser desorption/ionization mass spec-trometry of biopolymers. Anal Chem 63: 1193A–1203A

    PubMed  CAS  Google Scholar 

  • Hsu FF, Turk J, Williams TD and Welti R (2007) Electro-spray ionization multiple stage quadrupole ion-trap and tandem quadrupole mass spectrometric studies on phos-phatidylglycerol from Arabidopsisleaves. J Am Soc Mass Spectrom 18: 783–790

    Article  PubMed  CAS  Google Scholar 

  • Kates M (1986) Techniques of lipidology. In: Burdon RH and van Knippenberg PH (eds) Laboratory Techniques in Biochemistry and Molecular Biology. Elsevier, Amsterdam, pp. 1–464

    Google Scholar 

  • Kohn G, van der Ploeg P, Möbius M and Sawatzki G (1995) Influence of the derivatization procedure on the results of the gas chromatographic fatty acid analysis of human milk and infant formulae. Z Ernährungswiss 35: 226–234

    Article  Google Scholar 

  • Koivusalo M, Haimi P, Heikinheimo L, Kostiainen R and Somerharju P (2001) Quantitative determination of phos-pholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response. J Lipid Res 42: 663–672

    PubMed  Google Scholar 

  • Kunzler K and Eichenberger W (1997) Betaine lipids and zwitterionic phospholipids in plants and fungi. Phyto-chemistry 46: 883–892

    CAS  Google Scholar 

  • Kupke IR and Zeugner S (1978) Quantitative high-performance thin-layer chromatography of lipids in plasma and liver homogenates after direct application of 0.5-μl samples to the silica-gel layer. J Chromatogr B 146: 261–272

    Article  CAS  Google Scholar 

  • Larsen A, Mokastet E, Lundanes E and Hvattum E (2002) Separation and identification of phosphatidylserine molecular species using reversed-phase high-performance liquid chromatography with evaporative light scattering and mass spectrometric detection. J Chromatogr B 774: 115–120

    Article  CAS  Google Scholar 

  • Lee BL, Su J and Ong CN (2004) Monomeric C18 chro-matographic method for LC determination of lipophilic antioxidants in plants. J Chromatogr A 1048: 263–267

    PubMed  CAS  Google Scholar 

  • Lembcke J, Ceglarek U, Fiedler GM, Baumann S, Leichtle A and Thiery J (2005) Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS. J Lipid Res 46: 21–26

    Article  PubMed  CAS  Google Scholar 

  • Lepage G and Roy CC (1984) Improved recovery of fatty acids through direct transesterification without prior extraction or purification. J Lipid Res 25: 1391–1396

    PubMed  CAS  Google Scholar 

  • Lima ES and Abdalla DSP (2002) High-performance liquid chromatography of fatty acids in biological samples. Anal Chim Acta 465: 81–91

    Article  CAS  Google Scholar 

  • Lynch DV and Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings. Plant Physiol 83: 761–767

    Article  PubMed  CAS  Google Scholar 

  • Markham JE and Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thalianaby reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21: 1304–1314

    Article  PubMed  CAS  Google Scholar 

  • Markham JE, Li J, Cahoon EB and Jaworski JG (2006) Plant sphingolipids: separation and identification of major sphingolipid classes from leaves. J Biol Chem 281: 22684–22694

    Article  PubMed  CAS  Google Scholar 

  • Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A and Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49: 1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Moreau RA (2006) The quantitative analysis of lipids via HPLC with a charged aerosol detector. Lipids 41: 727–734

    Article  PubMed  CAS  Google Scholar 

  • Nichols B (1963) Separation of the lipids of photosynthetic tissues: improvements in analysis by thin-layer chroma-tography. Biochim Biophys Acta 70: 417–422

    Article  PubMed  CAS  Google Scholar 

  • Nordback J, Lundberg E and Christie WW (1998) Separation of lipid classes from marine particulate material by HPLC on a polyvinyl alcohol-bonded stationary phase using dual-channel evaporative light-scattering detection. Mar Chem 60: 165–175

    Article  CAS  Google Scholar 

  • Ogiso H, Suzuki T and Taguchi R (2008) Development of a reverse-phase liquid chromatography electrospray ioniza-tion mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Anal Biochem 375: 124–134

    Article  PubMed  CAS  Google Scholar 

  • Oku H, Baba S, Koga H, Takara K and Iwasaki H (2003) Lipid composition of mangrove and its relevance to salt tolerance. J Plant Res 116: 37–45

    PubMed  CAS  Google Scholar 

  • Orhan I, Sener B and Atici T (2003) Fatty acid distribution in the lipoid extracts of various algae. Chem Nat Comp 39: 167–170

    Article  CAS  Google Scholar 

  • Palumbo G and Zullo F (1987) The use of iodine staining for the quantitative analysis of lipids separated by thin-layer chromatography. Lipids 22: 201–205

    Article  PubMed  CAS  Google Scholar 

  • Pelillo M, Iafelice G, Marcon E and Caboni MF (2003) Identification of plant sterols in hexaploid and tetraploid wheats using gas chromatography with mass spectrometry. Rapid Commun Mass Spectrom 17: 2245–2252

    Article  PubMed  CAS  Google Scholar 

  • Picchioni GA, Watada AE and Whitaker BD (1996) Quantitative high-performance liquid chromatography analysis of plant phospholipids and glycolipids using light-scattering detection. Lipids 31: 217–221

    Article  PubMed  CAS  Google Scholar 

  • Pulfer M and Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22: 332–364

    Article  PubMed  CAS  Google Scholar 

  • Rizov I and Doulis A (2000) Determination of glycerolipid composition of rice and maize tissues using solid-phase extraction. Biochem Soc Trans 28: 586–589

    Article  PubMed  CAS  Google Scholar 

  • Rizov I and Doulis A (2001) Separation of plant membrane lipids by multiple solid-phase extraction. J Chromatogr A 922: 347–354

    Article  PubMed  CAS  Google Scholar 

  • Robb DB, Covey TR and Bruins AP (2000) Atmospheric pressure photoionization: an ionization method for liquid chromatography-mass spectrometry. Anal Chem 72: 3653–3659

    Article  PubMed  CAS  Google Scholar 

  • Schiller J, Süß R, Arnhold J, Fuchs B, Leßig J, Müller M, Petković M, Spalteholz H, Zschörnig O and Arnold K (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43: 449–488

    Article  PubMed  CAS  Google Scholar 

  • Schulze B, Lauchli R, Sonwa MM, Schmidt A and Boland W (2006)Profiling of structurally labile oxylipins in plants by in situ derivatization with pentafluorobenzyl hydroxy- lamine. Anal Biochem 348: 269–283

    Article  PubMed  CAS  Google Scholar 

  • Schwudke D, Oegema J, Burton L, Entchev E, Hannich JT, Ejsing CS, Kurzchalia T and Shevchenko A (2006) Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal Chem 78: 585–595

    Article  PubMed  CAS  Google Scholar 

  • Schwudke D, Hannich JT, Surendranath V, Grimard V, Moehring T, Burton L, Kurzchalia T and Shevchenko A (2007)Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra. Anal Chem 79: 4083–4093

    Article  PubMed  CAS  Google Scholar 

  • Shimbo K (1986) High-performance liquid-chromatography of phospholipids on aminopropyl silica column. Agric Biol Chem 50: 2643–2645

    Article  CAS  Google Scholar 

  • Shui G, Bendt AK, Pethe K, Dick T and Wenk MR (2007) Sensitive profiling of chemically diverse bioactive lipids. J Lipid Res 48: 1976–1984

    Article  PubMed  CAS  Google Scholar 

  • Silversand C and Haux C (1997) Improved high-performance liquid chromatographic method for the separation and quantification of lipid classes: application to fish lip-ids. J Chromatogr B 703: 7–14

    Article  CAS  Google Scholar 

  • Uemura M and Steponkus PL (1997) Effect of cold acclimation on the lipid composition of the inner and outer membrane of the chloroplast envelope isolated from rye leaves. Plant Physiol 114: 1493–1500

    PubMed  CAS  Google Scholar 

  • Uemura M, Joseph RA and Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana(effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109: 15–30

    PubMed  CAS  Google Scholar 

  • Vieler A, Wilhelm C, Goss R, Süß R and Schiller J (2007) The lipid composition of the unicellular green alga Chlamydomonas reinhardtiiand the diatom Cyclotella meneghinianainvestigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150: 143–155

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Li W, Li M and Welti R (2006) Profiling lipid changes in plant response to low temperature. Physiol Plant 126: 90–96

    Article  CAS  Google Scholar 

  • Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Rajas-hekar CB, Williams TD and Wang X (2002) Profiling membrane lipids in plant stress responses. J Biol Chem 277: 31994–32002

    Article  PubMed  CAS  Google Scholar 

  • Welti R, Wang X and Williams TD (2003) Electrospray ion-ization tandem mass spectrometry scan modes for plant chloroplast lipids. Anal Biochem 314: 149–152

    Article  PubMed  CAS  Google Scholar 

  • Welti R, Mui E, Sparks A, Wernimont S, Isaac G, Kirisits M, Roth M, Roberts CW, Botte C, Marechal E and McLeod R (2007) Lipidomic analysis of Toxoplasma gondiireveals unusual polar lipids. Biochemistry 46: 13882–13890

    Article  PubMed  CAS  Google Scholar 

  • White T, Bursten S, Frederighi D, Lewis RA and Nudelman E (1998) High-resolution separation and quantification of neutral lipid and phospholipid species in mammalian cells and sera by multione-dimensional thin-layer chromatog-raphy. Anal Biochem 10: 109–117

    Article  Google Scholar 

  • Yokoi Y, Aoshima K, Yanagisawa K, Yamazaki T, Ishida M, Houjou T, Nakanishi H, Oda Y and Taguchi R (2005) Construction of automated identification system for lipidome. The 53rd Annual Conference on ASMS, San Antonio, TX

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Willmitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Seiwert, B., Giavalisco, P., Willmitzer, L. (2009). Advanced Mass Spectrometry Methods for Analysis of Lipids from Photosynthetic Organisms. In: Wada, H., Murata, N. (eds) Lipids in Photosynthesis. Advances in Photosynthesis and Respiration, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2863-1_20

Download citation

Publish with us

Policies and ethics