Skip to main content

The Role of Phosphatidylglycerol in Photosynthesis

  • Chapter
Lipids in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 30))

Summary

Since the first identification of phosphatidylglycerol (PG) in the green alga Scenedesmus by Benson and Maruo in 1958, this lipid has been recognized as a ubiquitous phospholipid that is present in almost all organisms. PG is an anionic phospholipid, with a negatively charged phosphate group at neutral pH. In photosynthetic organisms, such as cyanobacteria and higher plants that perform oxygenic photosynthesis, the majority of PG is found in thylakoid membranes, which are the site of photosynthetic light reactions and electron transport. Thylakoid membranes are composed predominantly of glycoli-pids, such as monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfo-quinovosyldiacylglycerol (SQDG), and PG is the only major phospholipid that is present in thylakoid membranes. Thus, it has been suggested that PG might play an important role in the primary processes of photosynthesis in thylakoid membranes. Recent x-ray crystallographic analyses of the cyanobacterial photosystem I (PS I) and photosystem II (PS II) complexes that are involved in the photosynthetic transport of electrons in thylakoid membranes have identified four and 25 lipid molecules per monomer in the respective complexes. Three and two of these lipid molecules are PG in the PS I and PS II complexes, respectively. These findings suggest that lipids, including PG, might play important roles not only in the formation of the lipid bilayers of thylakoid membranes but also in the folding and assembly of the protein subunits in each complex. Genetic and biochemical studies of the role of PG, using mutants and genetically manipulated strains of cyanobacteria and higher plants with levels of PG different from those in the corresponding wild-type strains, have confirmed that PG is essential for the growth of cyanobacteria and higher plants, moreover, that it is crucial to the photosynthetic transport of electrons, the development of chloroplasts, and tolerance to chilling. In this review, we summarize our present understanding of the biochemical and physiological roles of PG in photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP:

Acyl-carrier protein

CL:

Cardiolipin

CDP-DG:

CDP-diacylglycerol

Cyt:

Cytochrome

DGDG:

Digalactosyldiacylglycerol

ER:

Endoplasmic reticulum

X:Y(Z):

Fatty acid containing X carbon atoms with Y double bonds, in the cis-confi guration, at position Z counted from the carboxyl terminus

FAS:

Fatty acid synthase

G3P:

Glycerol 3-phosphate

LHC:

Light-harvesting complex

LPA:

Lysophosphatidic acid

MGDG:

Monogalactosyldiacylglycerol

PA:

Phosphatidic acid

PC:

phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PGP:

Phosphatidylglycerophosphate

PS I:

Photosystem I

PS II:

Photosystem II

SQDG:

Sulfoquinovosyldiacylglycerol

References

  • Anderson SL and McIntosh L (1991) Light-activated hetero-trophic growth of the cyanobacterium Synechocystis sp. strain PCC6803: a blue light-requiring process. J Bacteriol 173: 2761–2767

    PubMed  CAS  Google Scholar 

  • Andersson B and Aro E-M (2001) Photodamage and D1 protein turnover in photosystem II. In: Aro E-M and Andersson B (eds) Regulation of Photosynthesis. Kluwer, Dordrecht, pp. 377–393

    Google Scholar 

  • Andrews J and Mudd JB (1985) Phosphatidylglycerol synthesis in pea chloroplasts. Pathway and localization. Plant Physiol 79: 259–265

    Article  PubMed  CAS  Google Scholar 

  • Aro E-M, Virgin I and Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143: 113–134

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk E, Müller F, Eubel H, Braun H-P, Frentzen M and Kushnir S (2003) Arabidopsis phosphatidylglycerophos-phate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33: 899–909

    Article  PubMed  CAS  Google Scholar 

  • Babu MM and Sankaran K (2002) DOLOP-database of bacterial lipoproteins. Bioinformatics 18: 641–643

    Article  CAS  Google Scholar 

  • Benson AA and Maruo B (1958) Plant phospholipids. Identification of the phosphatidylglycerols. Biochim Biophys Acta 27: 189–195

    Article  PubMed  CAS  Google Scholar 

  • Benson AA and Maruo B (1989) A ‘nova’ in phosphate metabolism, GPG, and discovery of phosphatidylglyc-erol. Biochim Biophys Acta 1000: 447–451

    Article  PubMed  CAS  Google Scholar 

  • Bishop DG, Sparace SA and Mudd JB (1985) Biosynthesis of sulfoquinovosyldiacylglycerol in higher plants. The origin of the diacylglycerol moiety. Arch Biochem Bio-phys 240: 851–858

    Article  CAS  Google Scholar 

  • Block MA, Dorne A-J, Joyard J and Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258: 13281–13286

    PubMed  CAS  Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J and Rögner M (1995) Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92: 175–179

    Article  PubMed  CAS  Google Scholar 

  • Braun V and Wu HC (1994) Lipoproteins: structure, function, biosynthesis and model for protein export. In: Ghuysn J-M and Hakenbeck R (eds) New Comprehensive Biochemistry, Vol 27. Elsevier Science, Amsterdam, pp. 319–341

    Google Scholar 

  • Browse J and Somerville C (1991) Glycerolipid synthesis – biochemistry and regulation. Annu Rev Plant Physiol Plant Mol Biol 42: 467–506

    Article  CAS  Google Scholar 

  • Browse J, McCourt P and Somerville CR (1985) A mutant of Arabidopsis lacking a chloroplast-specific lipid. Science 227: 763–765

    Article  PubMed  CAS  Google Scholar 

  • Burnap RL, Qian M and Pierce C (1996). The manganese-stabilizing protein of photosystem II modifies the in vivo deactivation and photoactivation kinetics of the H2O oxidation complex in Synechocystis sp. PCC 6803. Biochemistry 35: 874–882

    Article  PubMed  CAS  Google Scholar 

  • Carman GM and Henry SA (1999) Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 38: 361–399

    Article  PubMed  CAS  Google Scholar 

  • Chicco AJ and Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292: C33–C44

    Article  PubMed  CAS  Google Scholar 

  • Chitnis VP and Chitnis PR (1993) PsaL subunit is required for the formation of photosystem I trimers in the cyanobacte-rium Synechocystis sp. PCC 6803. FEBS Lett 336: 330–334

    Article  PubMed  CAS  Google Scholar 

  • Choi S-Y, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, Petit PX and Frohman MA (2007) Cardi-olipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 14: 597–606

    Article  PubMed  CAS  Google Scholar 

  • Clarke SM and Eaton-Rye JJ (1999) Mutation of Phe-363 in the photosystem II protein CP47 impairs photoautotrophic growth, alters chloride requirement, and prevents photosynthesis in the absence of either PSII-O or PSII-V in Syn-echocystis sp. PCC 6803. Biochemistry 38: 2707–2715

    Article  PubMed  CAS  Google Scholar 

  • Domonkos I, Malec P, Sallai A, Kovács L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T and Gombos Z (2004) Phosphatidylg-lycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol 134: 1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Domonkos I, Laczkó-Dobos H and Gombos Z (2008) Lipid-assisted protein-protein interactions that support photosynthetic and other cellular activities. Prog Lipid Res 47: 422–435

    Article  PubMed  CAS  Google Scholar 

  • Dorne AJ and Heinz E (1989) Position and pairing of fatty acids in phosphatidylglycerol from pea chloroplasts and mitochondria. Plant Sci 60: 39–46

    Article  CAS  Google Scholar 

  • Dorne AJ, Joyard J and Douce R (1990) Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci USA 87: 71–74

    Article  PubMed  CAS  Google Scholar 

  • Dowhan W (1997) Molecular basis of membrane phospholi-pid diversity: why are there so many lipids? Annu Rev Biochem 66: 199–232

    Article  PubMed  CAS  Google Scholar 

  • Droppa M, Horváth G, Hideg E and Farkas T (1995) The role of phospholipids in regulating photosynthetic electron transport activities: treatment of thylakoids with phospholipase C. Photosynth Res 46: 287–293

    Article  CAS  Google Scholar 

  • Dubertret G, Mirshahi A, Mirshahi M, Gerard-Hirne C and Tremolieres A (1994) Evidence from in vivo manipulations of lipid composition in mutants that the Δ3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem 226: 473–482

    Article  PubMed  CAS  Google Scholar 

  • Dubertret G, Gerard-Hirne C and Trémolières A (2002) Importance of trans3-hexadecenoic acid containing phosphatidylglycerol in the formation of the trimeric light-harvesting complex in Chlamydomonas. Plant Phys-iol Biochem 40: 829–836

    Article  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Frentzen M (2004) Phosphatidylglycerol and sulfoquinovo-syldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr Opin Plant Biol 7: 270–276

    Article  PubMed  CAS  Google Scholar 

  • Frentzen M, Heinz E, McKeon TA and Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyl-transferase from pea and spinach chloroplasts. Eur J Bio-chem 129: 629–636

    Article  CAS  Google Scholar 

  • Frentzen M, Nishida I and Murata N (1987) Properties of the plastidial acyl-(acyl-carrier protein): glycerol-3-phosphate acyltransferase from the chilling-sensitive plant squash (Cucurbita moschata). Plant Cell Physiol 28: 1195–1201

    CAS  Google Scholar 

  • Gan K, Gupta SD, Sankaran K, Schmid MB and Wu HC (1993) Isolation and characterization of a temperature sensitive mutant of Salmonella typhimurium defective in pro-lipoprotein modification. J Biol Chem 268: 16544–16550

    PubMed  CAS  Google Scholar 

  • Gombos Z, Várkonyi Z, Hagio M, Iwaki M, Kovács L, Masamoto K, Itoh S and Wada H (2002) Phosphatidylg-lycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41: 3796–3802

    Article  PubMed  CAS  Google Scholar 

  • Griebau R and Frentzen M (1994) Biosynthesis of phos-phatidylglycerol in isolated mitochondria of etiolated mung bean (Vigna radiata L.) seedlings. Plant Physiol 105: 1269–1274

    PubMed  CAS  Google Scholar 

  • Gupta SD, Gan K, Schmid MB and Wu HC (1993) Characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in apolipoprotein N-acyltrans-ferase. J Biol Chem 268: 16551–16556

    PubMed  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhahov A, Broser M, Zouni A and Saenger W (2009) Cyanobacterial photosystem II at 2.9 Å resolution: role of quinones, lipids, channels and chlorides. Nat Struct Mol Biol 16: 334–342

    Article  PubMed  CAS  Google Scholar 

  • Hagio M, Gombos Z, Várkonyi Z, Masamoto K, Sato N, Tsuzuki M and Wada H (2000) Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant Physiol 124: 795–804

    Article  PubMed  CAS  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S and Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43: 1456–1464

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris E, Nield J, Carne A and Barber J (2001) Subunit positioning and transmembrane helix organisation in the core dimer of photosystem II. FEBS Lett 504: 142–151

    Article  PubMed  CAS  Google Scholar 

  • Hobe S, Prytulla S, Kühlbrandt W and Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 13: 3423–3429

    PubMed  CAS  Google Scholar 

  • Hobe S, Förster R, Klingler J and Paulsen H (1995) N-prox-imal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34: 10224–10228

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Jiang J, Tyurin VA, Zhao Q, Mnuskin A, Ren J, Relikova NA, Feng W, Kurnikov IV and Kagan VE (2008) Cardiolipin deficiency leads to decreased cardiolipin peroxidation and increased resistance of cells to apoptosis. Free Rad Biol Med 44: 1935–1944

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki O, Nishida I, Agata K, Eguchi G and Murata N (1988) Cloning and nucleotide sequence of cDNA for the plastid glycerol-3-phosphate acyltransferase from squash. FEBS Lett 238: 424–430

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T and Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nature Biotech 14: 1003–1006

    Article  CAS  Google Scholar 

  • Jordan BR, Chow W-S and Baker AJ (1983) The role of phos-pholipids in the molecular organisation of pea chloroplast membranes: effect of phospholipid depletion on photosyn-thetic activities. Biochim Biophys Acta 725: 77–86

    Article  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyano-bacterial photosystem I at 2.5 Å resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Joyard J, Maréchal E, Miege C, Block MA, Dorne A-J and Douce R (1998) Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht, pp. 21–52

    Google Scholar 

  • Juncker AS, Willenbrock H, von Heijne G, Brunak S, Nielsen H and Krogh A (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12: 1652–1662

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vul-canus at 3.7 Å resolution. Proc Natl Acad Sci USA 100: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Kashino Y, Inoue-Kashino N, Roose JL and Pakrasi HB (2006) Absence of the PsbQ protein results in destabiliza-tion of the PsbV protein and decreased oxygen evolution activity in cyanobacterial photosystem II. J Biol Chem 281: 20834–20841

    Article  PubMed  CAS  Google Scholar 

  • Katayama K, Sakurai I and Wada H (2004) Identification of an Arabidopsis thaliana gene for cardiolipin synthase located in mitochondria. FEBS Lett 577: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Kenrick JR and Bishop DG (1986) Phosphatidylglycerol and sulfoquinovosyldiacylglycerol in leaves and fruits of chilling-sensitive plants. Phytochemistry 25: 1293–1295

    Article  CAS  Google Scholar 

  • Kimura A, Eaton-Rye JJ, Morita EH, Nishiyama Y and Hay-ashi H (2002) Protection of the oxygen-evolving machinery by the extrinsic proteins of photosystem II is essential for development of cellular thermotolerance in Syne-chocystis sp. PCC 6803. Plant Cell Physiol 43: 932–938

    Article  PubMed  CAS  Google Scholar 

  • Kruse O and Schmid GH (1995) The role of phosphatidylg-lycerol as a functional effector and membrane anchor of the D1-core peptide from photosystem II particles of the cyanobacterium Oscillatoria chalybea. Z Naturforsch 50c: 380–390

    Google Scholar 

  • Kruse O, Hankamer B, Konczak C, Gerle C, Morris E, Radunz A, Schmid GH and Barber J (2000) Phosphati-dylglycerol is involved in the dimerization of photosystem II. J Biol Chem 275: 6509–6514

    Article  PubMed  CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302: 1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Laczkó-Dobos H, Ughy B, Tóth SZ, Komenda J, Zsiros O, Domonkos I, Párducz Á, Bogos B, Komura M, Itoh S and Gombos Z (2008) Role of phosphatidylglycerol in the function and assembly of photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes. Biochim Biophys Acta 1777: 1184–1194

    Article  PubMed  CAS  Google Scholar 

  • Leng J, Sakurai I, Wada H and Shen J-R (2008) Effects of phospholipase and lipase treatments on photosystem II core dimer from a thermophilic cyanobacterium. Photo-synth Res 98: 469–478

    Article  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287–292

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Seanger W, Zouni A and Biesiadka J (2005) Toward complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438: 1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Lyons JK (1973) Chilling injury in plants. Annu Rev Plant Physiol 24: 445–466

    Article  CAS  Google Scholar 

  • Maanni AE, Dubertret G, Delrieu MJ, Roche O and Tré-molières A (1998) Mutants of Chlamydomonas reinhardtii affected in phosphatidylglycerol metabolism and thyla-koid biogenesis. Plant Physiol Biochem 36: 609–619

    Article  Google Scholar 

  • Malkin R and Niyogi K (2000) Photosynthesis. In: Buchanan BB, Gruissem W and Jones RL (eds) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, pp. 568–628

    Google Scholar 

  • Matsumoto K (2001) Dispensable nature of phosphatidylg-lycerol in Escherichia coli: dual roles of anionic phos-pholipids. Mol Microbiol 39: 1427–1433

    Article  PubMed  CAS  Google Scholar 

  • McCourt P, Browse J, Watson J, Arntzen CJ and Somerville CR (1985) Analysis of photosynthetic antenna function in a mutant of Arabidopsis thaliana (L.) lacking trans-hexadecenoic acid. Plant Physiol 78: 853–858

    Article  PubMed  CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058: 87–106

    Article  CAS  Google Scholar 

  • Moon BY, Higashi S, Gombos Z and Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92: 6219–6223

    Article  PubMed  CAS  Google Scholar 

  • Moore TS Jr (1974) Phosphatidylglycerol synthesis in castor bean endosperm. Kinetics, requirements, and intracellular localization. Plant Physiol 54: 164–168

    Article  PubMed  CAS  Google Scholar 

  • Moore TS Jr (1982) Phospholipid biosynthesis. Annu Rev Plant Physiol 33: 235–259

    Article  CAS  Google Scholar 

  • Mudd JB and Dezacks R (1981) Synthesis of phosphatidylg-lycerol by chloroplasts from leaves of Spinacia oleracea L. (spinach). Arch Biochem Biophys 209: 584–591

    Article  PubMed  CAS  Google Scholar 

  • Murata N (1983) Molecular species composition of phos-phatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 24: 81–86

    CAS  Google Scholar 

  • Murata N and Nishida I (1987) Lipids of blue-green algae (cyanobacteria). In: Stumpf PK and Conn EE (eds) The Biochemistry of Plants, Vol 9. Academic Press, Orlando, FL, pp. 315–347

    Google Scholar 

  • Murata N and Tasaka Y (1997) Glycerol-3-phosphate acyl-transferase in plants. Biochim Biophys Acta 1348: 10–16

    Article  PubMed  CAS  Google Scholar 

  • Murata N and Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308: 1–8

    PubMed  CAS  Google Scholar 

  • Murata N and Yamaya J (1984) Temperature-dependent phase behavior of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Physiol 74: 1016–1024

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Sato N, Takahashi N and Hamazaki Y (1982) Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 23: 1071–1079

    CAS  Google Scholar 

  • Murata N, Miyao M, Omata T, Matsunami H and Kuwa-bara T (1984) Stoichiometry of components in the pho-tosynthetic oxygen evolution system of photosystem-II particles prepared with Triton X-100 from spinach chlo-roplasts. Biochim Biophys Acta 765: 363–369

    Article  CAS  Google Scholar 

  • Murata N, Wada H and Gombos Z (1992a) Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol 33: 933–941

    CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y and Nishida I (1992b) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710–713; (correction) 357: 607

    Article  CAS  Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Nishida I and Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47: 541–568

    Article  PubMed  CAS  Google Scholar 

  • Nishida I, Frentzen M, Ishizaki O and Murata N (1987) Purification of isomeric forms of acyl-(acyl-carrier protein): glycerol-3-phosphate acyltransferase from greening squash cotyledons. Plant Cell Physiol 28: 1071–1079

    CAS  Google Scholar 

  • Nishida I, Tasaka Y, Shiraishi H and Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21: 267–277

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Hayashi H, Watanabe T and Murata N (1994) Photosynthetic oxygen evolution is stabilized by cyto-chrome c 550 against heat inactivation in Synechococcus sp. PCC 7002. Plant Physiol 105: 1313–1319

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Los, DA, Hayashi H and Murata N (1997) Thermal protection of the oxygen-evolving machinery by PsbU, an extrinsic protein of photosystem II, in Synechoc-occus species PCC 7002. Plant Physiol 115: 1473–1480

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI and Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757: 742–749

    Article  PubMed  CAS  Google Scholar 

  • Nowaczyk MM, Hebeler R, Schlodder E, Meyer HE, Warscheid B and Rögner M (2006) Psb27, a cyanobacterial lipo-protein, is involved in the repair cycle of photosystem II. Plant Cell 18: 3121–3131

    Article  PubMed  CAS  Google Scholar 

  • Nowicki M, Müller F and Frentzen M (2005) Cardiolipin syn-thase of Arabidopsis thaliana. FEBS Lett 579: 2161–2165

    Article  PubMed  CAS  Google Scholar 

  • Nußberger S, Dörr K, Wang DN and Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234: 347–356

    Article  PubMed  Google Scholar 

  • Ohlrogge J and Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957–970

    PubMed  CAS  Google Scholar 

  • Ohnishi M and Thompson GA Jr (1991) Biosynthesis of the unique trans3-hexadecenoic acid component of chloroplast phosphatidylglycerol: evidence concerning its site and mechanism of formation. Arch Biochem Biophys 288: 591–599

    Article  PubMed  CAS  Google Scholar 

  • Okazaki K, Sato N, Tsuji N, Tsuzuki M and Nishida I (2006) The significance of C16 fatty acids at the sn-2 positions of glycerolipids in the photosynthetic growth of Syne-chocystis sp. PCC6803. Plant Physiol 141: 546–556

    Article  PubMed  CAS  Google Scholar 

  • Ott M, Zhivotovsky B and Orrenius S (2007) Role of car-diolipin in cytochrome c release from mitochondria. Cell Death Differ 14: 1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Phillips MC, Hauser H and Paltauf F (1972) The inter- and intra-molecular mixing of hydrocarbon chains in lecithin/ water systems. Chem Phys Lipids 8: 127–133

    Article  PubMed  CAS  Google Scholar 

  • Raison JK (1973) The influence of temperature-induced phase changes on kinetics of respiratory and other membrane-associated enzyme systems. J Bioenerg 4: 285–309

    Article  PubMed  CAS  Google Scholar 

  • Raison JK and Wright LC (1983) Thermal phase transitions in the polar lipids of plant membranes. Their induction by disaturated phospholipids and their possible relation to chilling injury. Biochim Biophys Acta 731: 69–78

    Article  CAS  Google Scholar 

  • Roose JL and Pakrasi HB (2008) The Psb27 protein facilitates manganese cluster assembly in photosystem II. J Biol Chem 283: 4044–4050

    Article  PubMed  CAS  Google Scholar 

  • Roughan G and Slack R (1984) Glycerolipid synthesis in leaves. Trends Biochem Sci 9: 383–386

    Article  CAS  Google Scholar 

  • Roughan PG, Thompson GA Jr and Cho SH (1987) Metabolism of exogenous long-chain fatty acids by spinach leaves. Arch Biochem Biophys 259: 481–496

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Sulpice R, Hou C-X, Kinoshita M, Higashi S, Kanesaki Y, Nonaka H, Moon BY and Murata N (2004) Genetic modification of fatty acid unsaturation of phos-phatidylglycerol in chloroplasts alters the sensitivity to cold stress. Plant Cell Environ 27: 99–105

    Article  CAS  Google Scholar 

  • Sakurai I, Hagio M, Gombos Z, Tyystjärvi T, Paakkarinen V, Aro E-M and Wada H (2003) Requirement of phosphati-dylglycerol for maintenance of photosynthetic machinery. Plant Physiol 133: 1376–1384

    Article  PubMed  CAS  Google Scholar 

  • Sakurai I, Shen J-R, Leng J, Ohashi S, Kobayashi M and Wada H (2006) Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. J Biochem 140: 201–209

    Article  PubMed  CAS  Google Scholar 

  • Sakurai I, Mizusawa N, Ohashi S, Kobayashi M and Wada H (2007) Effects of the lack of phosphatidylglycerol on the donor side of photosystem II. Plant Physiol 144: 1336–1346

    Article  PubMed  CAS  Google Scholar 

  • Sankaran K and Wu HC (1994) Lipid modification of bacterial prolipoprotein: transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 269: 19701–19706

    PubMed  CAS  Google Scholar 

  • Sato N (2004) Roles of the acidic lipids sulfoquinovosyl dia-cylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J Plant Res 117: 495–505

    Article  PubMed  CAS  Google Scholar 

  • Sato N and Murata N (1982a) Lipid biosynthesis in the bluegreen alga Anabaena variabilis. I. Lipid classes. Biochim Biophys Acta 710: 271–278

    Article  CAS  Google Scholar 

  • Sato N and Murata N (1982b) Lipid biosynthesis in the bluegreen alga Anabaena variabilis. II. Fatty acids and lipid molecular species. Biochim Biophys Acta 710: 279–289

    Article  CAS  Google Scholar 

  • Sato N, Hagio M, Wada H and Tuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci USA 97: 10655–10660

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Suda K and Tsuzuki M (2004) Responsibility of phosphatidylglycerol for biogenesis of the PSI complex. Biochim Biophys Acta 1658: 235–243

    Article  PubMed  CAS  Google Scholar 

  • Schanklin J and Somerville C (1991) Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA 88: 2510–2514

    Article  Google Scholar 

  • Shen J-R, Vermaas W and Inoue Y (1995) The role of cyto-chrome c-550 as studied through reverse genetics and mutant characterization in Synechocystis sp. PCC 6803. J Biol Chem 270: 6901–6907

    Article  PubMed  CAS  Google Scholar 

  • Shen J-R, Qian M, Inoue Y and Burnap RL (1998) Functional characterization of Synechocystis sp. PCC 6803 ΔpsbU and ΔpsbV mutants reveals important roles of cytochrome c-550 in cyanobacterial oxygen evolution. Biochemistry 37: 1551–1558

    Article  PubMed  CAS  Google Scholar 

  • Schlame M (2008) Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res 49: 1607–1620

    Article  PubMed  CAS  Google Scholar 

  • Schlame M and Ren M (2006) Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett 580: 5450–5455

    Article  PubMed  CAS  Google Scholar 

  • Schlame M, Rua D and Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39: 257–288

    Article  PubMed  CAS  Google Scholar 

  • Shibuya I (1992) Metabolic regulation and biological functions of phospholipids in Escherichia coli. Prog Lipid Res 31: 245–299

    Article  PubMed  CAS  Google Scholar 

  • Siegenthaler P-A (1998) Molecular organization of acyl lipids in photosynthetic membranes of higher plants. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht, pp. 119–144

    Google Scholar 

  • Somerville C, Browse J, Jaworski JG and Ohlrogge JB (2000) Lipids. In: Buchanan BB, Gruissem W and Jones RL (eds) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, pp. 456–527

    Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M and Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24: 919–928

    Article  PubMed  CAS  Google Scholar 

  • Stroebel D, Choquest Y, Popot JL and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe IC, Russell RR (1995) Lipoproteins of Gram-positive bacteria. J Bacteriol 177: 1123–1128

    PubMed  CAS  Google Scholar 

  • Sveshnikov D, Funk C and Schröder WP (2007) The PsbP-like protein (sll1418) of Synechocystis sp. PCC 6803 stabilizes the donor side of photosystem II. Photosynth Res 93: 101–109

    Article  PubMed  CAS  Google Scholar 

  • Szalontai B, Kóta Z, Nonaka H and Murata N (2003) Structural consequences of genetically engineered saturation of the fatty acids of phosphatidylglycerol in tobacco thylakoid membranes. An FTIR study. Biochemistry 42: 4292–4299

    Article  CAS  Google Scholar 

  • Tasaka Y, Nishida I, Higashi S, Beppu T and Murata N (1990) Fatty acid composition of phosphatidylglycerols in relation to chilling sensitivity of woody plants. Plant Cell Physiol 31: 545–550

    CAS  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N and Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16: 2164–2175

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga M, Tokunaga H and Wu HC (1982) Post-transla-tional modification and processing of Escherichia coli proli-poprotein in vitro. Proc Natl Acad Sci USA 79: 2255–2259

    Article  PubMed  CAS  Google Scholar 

  • Trémolières A and Siegenthaler P-A (1998) Reconstitution with lipids. In: Siegenthaler P-A and Murata N (eds) Lip-ids in Photosynthesis: Structure, Function and Genetics. Kluwer, Dordrecht, pp. 175–189

    Google Scholar 

  • Ujihara T, Sakurai I, Mizusawa N and Wada H (2008) A method for analyzing lipid-modified proteins with mass spectrometry. Anal Biochem 374: 429–431

    Article  PubMed  CAS  Google Scholar 

  • Wada H and Murata N (1989) Synechocystis PCC6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol 30: 971–978

    CAS  Google Scholar 

  • Wada H and Murata N (1998) Membrane lipids in cyano-bacteria. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Klu-wer, Dordrecht, pp. 65–81

    Google Scholar 

  • Wada H and Murata N (2007) The essential role of phosphati-dylglycerol in photosynthesis. Photosynth Res 92: 205–215

    Article  PubMed  CAS  Google Scholar 

  • Wakil SJ, Stoops JK and Joshi VC (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52: 537–579

    Article  PubMed  CAS  Google Scholar 

  • Weier D, Müller C, Gaspers C and Frentzen M (2005) Characterization of acyltransferases from Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 334: 1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Wolter FP, Schmidt R and Heinz E (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J 11: 4685–4692

    PubMed  CAS  Google Scholar 

  • Wu HC and Tokunaga M (1986) Biogenesis of lipopro-teins in bacteria. Curr Top Microbiol Immunol 125: 127–157

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Härtel H, Wada H, Hagio M, Yu B, Eakin C and Ben-ning C (2002) The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerophosphate synthase with impaired activity. Plant Physiol 129: 594–604

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Makhotra A, Ren M and Schlame M (2006a) The enzymatic function of tafazzin. J Biol Chem 281: 39217–39224

    Article  CAS  Google Scholar 

  • Xu Y, Condell M, Plesken H, Edelman-Novemsky I, Ma J, Ren M and Schlame M (2006b) A Drosophila model of Barth syndrome. Proc Natl Acad Sci USA 103: 11584–11588

    Article  CAS  Google Scholar 

  • Yamashita E, Zhang H and Cramer WA (2007) Structure of the cytochrome b 6 f complex: quinone analogue inhibitors as ligands of heme c n. J Mol Biol 370: 39–52

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work performed in the authors' laboratory was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Wada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wada, H., Mizusawa, N. (2009). The Role of Phosphatidylglycerol in Photosynthesis. In: Wada, H., Murata, N. (eds) Lipids in Photosynthesis. Advances in Photosynthesis and Respiration, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2863-1_11

Download citation

Publish with us

Policies and ethics