Skip to main content

Linear Scaling Second Order Møller Plesset Perturbation Theory

  • Chapter
  • First Online:
Linear-Scaling Techniques in Computational Chemistry and Physics

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 13))

Abstract

All traditional methods for electron correlation share a steep power law dependence on the molecular size. This high scaling prohibits the use of these methods to large systems in spite of the very impressive advances in computer technology over the past decades. Clearly, this problem cannot be solved with improvements of computers alone, and new methods reducing the power law scaling to one or near one must be developed. In this chapter some linear of low scaling methods for electron correlation will be reviewed. The focus will be on the linear scaling MP2 methods, but other more accurate correlation methods will also be briefly discussed. In addition, the very efficient RI-MP2 will be discussed even though the high power law scaling of conventional MP2 has not been reduced. A discussion of the RI-MP2 method has been included since it is perhaps an order of magnitude more efficient than other efficient MP2 methods. The RI or density fitting approach has now been combined with the local correlation method, and the RI-LMP2 method exhibits linear scaling with the size of the system. Most of the methods discussed herein are based on the local correlation method introduced by Pulay and Saebø in the early eighties and developed further by Schütz, Werner and co-workers. The topic was reviewed in 2002 and this review will focus on the more recent advances in this field. A new linearly scaling LMP2 approach yielding essentially identical results to conventional canonical MP2 will be described, and MP2 calculations with around 5,000 contracted basis functions have been performed without density fitting using this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pulay P (1983) Chem PhysLett 100:151

    CAS  Google Scholar 

  2. Saebø S, Pulay P (1985) Chem Phys Lett 113:13

    Article  Google Scholar 

  3. Pulay P, Saebø S (1986) Theor Chim Acta 69:357

    Article  CAS  Google Scholar 

  4. Saebø S, Pulay P (1987) J Chem Phys 86:914

    Article  Google Scholar 

  5. Saebø S, Pulay P (1988) J Chem Phys 88:1884

    Article  Google Scholar 

  6. Saebø S (1992) Int J Quantum Chem 42:217

    Article  Google Scholar 

  7. Saebø S, Pulay P (1993) Annu Rev Phys Chem 44:213

    Article  Google Scholar 

  8. Saebø S (2002) In: Leszczynski J (ed) Computational chemistry. Review of current trends, vol 7. World Scientific, Singapore, p 63

    Google Scholar 

  9. Carter EA, Walter D (2004) In: von Ragué Schleyer P, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry (online edition). Wiley, Chichester

    Google Scholar 

  10. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz RB, Cao Y (1999) J Phys Chem A 103:1913

    Article  CAS  Google Scholar 

  11. Ayala PY, Scuseria GE (1999) J Chem Phys 110:3660

    Article  CAS  Google Scholar 

  12. Martinez TJ, Carter EA (1994) J Chem Phys 100:3631

    Article  CAS  Google Scholar 

  13. Reynolds G, Martinez TJ, Carter EA (1996) J Chem Phys 105:6455

    Article  CAS  Google Scholar 

  14. Lee MS, Maslen PE, Head-Gordon M (2000) J Chem Phys 112:3592

    Article  CAS  Google Scholar 

  15. Schütz M, Hetzer P, Werner H-J (1999) J Chem Phys 111:5691

    Article  Google Scholar 

  16. Hetzer G, Schütz M, Stoll H, Werner H-J (2000) J Chem Phys 113:9443

    Article  CAS  Google Scholar 

  17. Hampel C, Werner H-J (1996) J Chem Phys 104:6286

    Article  CAS  Google Scholar 

  18. Schütz M, Werner H-J (2001) J Chem Phys 114:661

    Article  Google Scholar 

  19. Schütz M (2002) Phys Chem Chem Phys 4:3941

    Article  Google Scholar 

  20. Schütz M, Werner H-J (2000) Chem Phys Lett 318:370

    Article  Google Scholar 

  21. Schütz M (2000) J Chem Phys 113:9986

    Article  Google Scholar 

  22. Schütz M (2002) J Chem Phys 116:8772

    Article  Google Scholar 

  23. Saebø S, Pulay P (1986) Chem Phys Lett 131:384

    Article  Google Scholar 

  24. Pulay P, Saebø S (1985) Chem Phys Lett 117:37

    Article  CAS  Google Scholar 

  25. Boughton JW, Pulay P (1993) Int J Quantum Chem 47:49

    Article  CAS  Google Scholar 

  26. Pulay P (1986) J Chem Phys 85:1703

    Article  CAS  Google Scholar 

  27. Saebø S, Boggs JE, Fan K (1992) J Phys Chem 96:926

    Article  Google Scholar 

  28. Saebø S (1990) Int J Quantum Chem 38:641

    Article  Google Scholar 

  29. Saebø S, Pulay P (2001) J Chem Phys 115:3975

    Article  Google Scholar 

  30. Feyereissen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359

    Article  Google Scholar 

  31. Kendall RA, Früchtl HA (1997) Theor Chem Acc 97:158

    Article  CAS  Google Scholar 

  32. Vahtras O, Almlöf J, Feiereissen MW (1993) Chem Phys Lett 213:514

    Article  CAS  Google Scholar 

  33. Weigen F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143

    Article  Google Scholar 

  34. Weigen F, Kohn A, Hättig C (1998) J Chem Phys 109: 1593

    Article  Google Scholar 

  35. Hättig C (2005) Phys Chem Chem Phys 7:59

    Article  Google Scholar 

  36. Berthold DE, Harrison RJ (1998) J Chem Phys 109:1593

    Article  Google Scholar 

  37. Hellweg A, Hättig C, Höfner S, Klopper W (2007) Theor Chem Acc 117:587

    Article  CAS  Google Scholar 

  38. Weigen F, Häser M (1997) Theor Chem Acc 97:331

    Article  Google Scholar 

  39. Katoda M, Nagase S (2009) Int J Quantum Chem 109:2121

    Article  Google Scholar 

  40. Werner H-J, Manby FR, Knowles PJ (2003) J Chem Phys 118:8149

    Article  CAS  Google Scholar 

  41. Saebø S, Baker J, Wolinski K, Pulay P (2004) J Chem Phys 120:11423

    Article  Google Scholar 

  42. El-Azhary A, Rauhut G, Pulay P, and Werner H-J (1998) J Chem Phys 108:5185

    Article  CAS  Google Scholar 

  43. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  44. Bartlett RJ, Purvis GD (1978) Int J Quant Chem 14:561

    Article  CAS  Google Scholar 

  45. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quantum Chem 14:545

    Article  CAS  Google Scholar 

  46. Pulay P, Saebø S, Meyer W (1984) J Chem Phys 81:1901

    Article  CAS  Google Scholar 

  47. Almlöf J (1991) Chem Phys Lett 176:319

    Article  Google Scholar 

  48. Häser M, Almlöf J (1992) J Chem Phys 96:489

    Article  Google Scholar 

  49. Häser M (1993) Theor Chim Acta 87:147

    Article  Google Scholar 

  50. Boys SF (1966) In: Löwdin PO (ed) Quantum theory of atoms, molecules, and the solid state. Academic, New York, NY, p 253

    Google Scholar 

  51. Pipek J, Mezey PG (1989) J Chem Phys 90:4916

    Article  CAS  Google Scholar 

  52. Boughton JW, Pulay P (1993) J Comput Chem 14:736

    Article  CAS  Google Scholar 

  53. Meyer W, Frommhold L (1986) Phys Rev A 33:3807

    Article  CAS  Google Scholar 

  54. Rauhut G, Pulay P, Werner H-J (1998) J Comput Chem 19:1241

    Article  CAS  Google Scholar 

  55. Pulay P, Saebø S, Wolinski K (2001) Chem Phys Lett 344:543

    Article  CAS  Google Scholar 

  56. Baker J, Pulay P (2002) J Comput Chem 23:1150

    Article  CAS  Google Scholar 

  57. Pulay P, Meyer W, Saebø S unpublished results

    Google Scholar 

  58. Yoshimine M (1969) Report RJ-555 IBM Research Laboratory, San Jose, CA

    Google Scholar 

  59. Baker J, Wolinski K, Malagoli M, Kinghorn D, Wolinski P, Magyarfalvi G, Saebo S, Janowski T, Pulay P (2009) J Comput Chem 30:317

    Article  CAS  Google Scholar 

  60. Walter D, Szilva KNAB, Carter EA (2002) J Chem Phys 117:1982

    Article  CAS  Google Scholar 

  61. Boys SF, Shavitt I (1959) University of Wisconsin, RepWISAF-13

    Google Scholar 

  62. van Alsenoy C (1988) J Comp Chem 8:620

    Article  Google Scholar 

  63. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283

    Article  CAS  Google Scholar 

  64. Schütz M, Werner H-J, Lindh R, Manby FR (2004) J Chem Phys 121:737

    Article  Google Scholar 

  65. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2008) MOLPRO, version 2008.1, a package of ab initio programs

    Google Scholar 

  66. Rauhut G, Werner H-J (2003) Phys Chem Chem Phys 5:2001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svein Saebø .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Saebø, S. (2011). Linear Scaling Second Order Møller Plesset Perturbation Theory. In: Zalesny, R., Papadopoulos, M., Mezey, P., Leszczynski, J. (eds) Linear-Scaling Techniques in Computational Chemistry and Physics. Challenges and Advances in Computational Chemistry and Physics, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2853-2_3

Download citation

Publish with us

Policies and ethics