Skip to main content

ROS and Regulation of Photosynthesis

  • Chapter
  • First Online:
Reactive Oxygen Species in Plant Biology

Abstract

In plant, cell chloroplast is one of the prime locales for the formation of ROS and the origin of redox signal. Any redox imbalance in photosynthetic electron transport and photosynthetic carbon reduction cycle eventually causes generation of ROS in plants. An efficient antioxidative defense operates both at metabolic interface and at genetic level for processing ROS efficiently for the maintenance of redox homeostasis and ROS pool. The significance of antioxidative defense network in the maintenance of optimum photosynthetic rate has been revealed in many studies involving molecular genetics and proteomic approaches. Recent studies have confirmed that the internal redox state of some important components of Z-scheme electron carriers (plastoquinone, cytochrome b6f complex, etc.) affects chloroplast gene expression, hinting the significance of chloroplast redox signal in controlling photosynthesis. Additionally, through redox regulation, photosynthesis functions as sensors for environmental cues like excess photochemical energy. This in fact provides regulatory loop in which expression of photosynthetic genes is not only coupled with redox state of photosynthetic electron flow but also senses excess photochemical energy. So, keeping all these views under consideration, an effort has been made to describe the present concepts of the role of photosynthesis in the origin of oxidative stress and redox signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alscher RG, Hess JL (1993) Antioxidants in higher plants. CRC Press, Boca Raton

    Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen species and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Baier M, Noctor G, Foyer CH, Dietz KJ (2000) Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol 124:823–832

    Article  CAS  Google Scholar 

  • Bartoli CG, Simontacchi M, Eduardo T, Beltrano J, Montaldi E, Pantarulo S (1999) Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50:375–383

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2012) An inductive pulse of hydrogen peroxide pretreatment restores redox homeostasis and mitigates oxidative membrane damage under extremes of temperature in two rice cultivars (Oryza sativa L., Cultivars Ratna and SR 26B). Plant Growth Regul 68:395–410

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2014) Membrane lipid peroxidation and its conflict of interest: the two faces of oxidative stress. Curr Sci 107:1811–1823

    CAS  Google Scholar 

  • Bilger W, Björkman O (1994) Relationships among violaxanthin deepoxidation, thylakoid membrane conformation and non-photochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.). Planta 193:238–246

    Article  CAS  Google Scholar 

  • Bouvier F, d’Harlingue A, Hugueney P, Marin E, Marion-Poll A, Camara B (1996) Xanthophyll biosynthesis: cloning, expression, functional reconstitution and regulation of β-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum). J Biol Chem 271:28861–28867

    Article  CAS  Google Scholar 

  • Bratt CE, Arvidsson P-O, Carlsson M, Ã…kerlund H-E (1995) Regulation of violaxanthin de-epoxidase activity by pH and ascorbate concentration. Photosynth Res 45:169–175

    Article  CAS  Google Scholar 

  • Bugos RC, Yamamoto HY (1996) Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci U S A 93:6320–6325

    Article  CAS  Google Scholar 

  • Bugos RC, Hieber AD, Yamamoto HY (1998) Xanthophyll-cycle enzymes are members of the lipocalin family, the first identified from plants. J Biol Chem 273:15321–15324

    Article  CAS  Google Scholar 

  • Della Penna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  Google Scholar 

  • Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15:1129–1159

    Article  CAS  Google Scholar 

  • Dietz KJ, Horling F, Konig J, Baier M (2002) The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53:1321–1329

    CAS  PubMed  Google Scholar 

  • Foyer CH (1996) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios J (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, New York, pp 587–621

    Google Scholar 

  • Foyer CH (1997) Oxygen metabolism and electron transport in photosynthesis. In: Scandalios J (ed) The molecular biology of free radical scavenging systems. Cold Spring Harbor Laboratory Press, New York, pp 587–621

    Google Scholar 

  • Foyer CH (2015) Redox homeostasis: opening up ascorbate transport. Nat Plants 1:14012

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  Google Scholar 

  • Foyer CH, Harbinson J (1999) Relationships between antioxidant metabolism and carotenoids in the regulation of photosynthesis. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer Academic Publishers, Dordrecht, p 305

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione associated mechanisms of acclimatory stress tolerance and signalling. Physiol Planta 100:241–254

    Article  CAS  Google Scholar 

  • Genty B, Harbinson J (1996) Regulation of light utilization for photosynthetic electron transport. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht, pp 67–99

    Google Scholar 

  • Gilmore AM (1997) Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Planta 99:197–209

    Article  CAS  Google Scholar 

  • Hager A, Holocher K (1994) Localization of the xanthophyll-cycle enzyme violaxanthin de-epoxidase within the thylakoid lumen and abolition of its mobility by a (light-dependent) pH decrease. Planta 192:581–589

    Article  CAS  Google Scholar 

  • Havaux M, Bonfils J-P, Lütz C, Niyogi KK (2000) Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiol 124:273–284

    Article  CAS  Google Scholar 

  • Hideg É, Kalai T, Hideg K, Vass I (1998) Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37:11405–11411

    Article  CAS  Google Scholar 

  • Hideg E, Barta C, Kalai T, Vass M, Hideg K, Asada K (2002) Detection of singlet oxygen and superoxide with fluorescence sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol 43:1154–1164

    Article  CAS  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    Article  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  CAS  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Krause GH (1994) Photoinhibition induced by low temperatures. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis. Bios Scientific, Oxford, pp 331–342

    Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    Article  CAS  Google Scholar 

  • Mehler AH (1951) Studies of reactions of illuminated chloroplasts. 10. Mechanics of reduction of oxygen and other Hill reagents. Arch Biochem Biophys 33:65–77

    Article  CAS  Google Scholar 

  • Munekage YN, Genty B, Peltier G (2008) Effect of PGR5 impairment on photosynthesis and growth in Arabidopsis thaliana. Plant Cell Physiol 49:1688–1698

    Article  CAS  Google Scholar 

  • Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  CAS  Google Scholar 

  • Niyogi KK, Shih C, Chow WS, Pogson BJ, DellaPenna D, Björkman O (2001) Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosyn Res 67:139–145

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  • Ohad I, Kyle DJ, Arntzen CJ (1984) Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol 270:14919–14927

    Google Scholar 

  • Queval G, Hager J, Gakie’re B, Noctor G (2008) Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J Exp Bot 59:135–146

    Article  CAS  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    Article  CAS  Google Scholar 

  • Russell AW, Critchley C, Robinson SA, Franklin LA, Seaton GGR, Chow W-S, Anderson J, Osmond CB (1995) Photosystem II regulation and dynamics of the chloroplast D1 protein in Arabidopsis leaves during photosynthesis and photoinhibition. Plant Physiol 107:943–952

    Article  CAS  Google Scholar 

  • Santos M, Gousseau H, Lister C, Foyer C, Creissen G, Mullineaux P (1996) Cytosolic ascorbate peroxidase from Arabidopsis thaliana L. is encoded by a small multigene family. Planta 1981(1):64–69

    Google Scholar 

  • Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005) Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot 56:1481–1489

    Article  CAS  Google Scholar 

  • Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467

    Article  CAS  Google Scholar 

  • Tardy F, Havaux M (1997) Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim Biophys Acta 4 1330(2):179–193

    Article  CAS  Google Scholar 

  • Vass I, Aro EM (2008) Photoinhibition of photosynthetic electron transport. In: Renger G (ed) Primary processes of photosynthesis: basic principles and apparatus. Royal Society of Chemistry, Cambridge, pp 393–411

    Google Scholar 

  • Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14:200–205

    Article  CAS  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature India Private Limited

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharjee, S. (2019). ROS and Regulation of Photosynthesis. In: Reactive Oxygen Species in Plant Biology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3941-3_5

Download citation

Publish with us

Policies and ethics