Skip to main content

Morphology of the Ascending Aorta in Bicuspid Aortic Valve Disease

  • Chapter
  • First Online:
  • 1626 Accesses

Abstract

The spectrum of bicuspid aortic valve (BAV) disease encompasses not only maldevelopment of the aortic valve but also abnormalities of the thoracic aorta, including aortic root and ascending aortic dilatation. Insidious formation of thoracic aortic aneurysm (TAA) can lead to aortic dissection or rupture with necropsy series suggesting a 5–10 times higher risk of aortic dissection in BAV compared to patients with a trileaflet aortic valve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tadros TM, Klein MD, Shapira OM. Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation. 2009;119(6):880–90.

    Article  PubMed  Google Scholar 

  2. Larson EW, Edwards WD. Risk factors for aortic dissection: a necropsy study of 161 cases. Am J Cardiol. 1984;53(6):849–55.

    Article  CAS  PubMed  Google Scholar 

  3. Ward C. Clinical significance of the bicuspid aortic valve. Heart. 2000;83(1):81–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106(8):900–4.

    Article  PubMed  Google Scholar 

  5. Hardikar AA, Marwick TH. Surgical thresholds for bicuspid aortic valve associated aortopathy. JACC Cardiovasc Imaging. 2013;6(12):1311–20.

    Article  PubMed  Google Scholar 

  6. El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol. 2009;6(12):771–86.

    Article  CAS  PubMed  Google Scholar 

  7. Guo DC, Papke CL, He R, Milewicz DM. Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y Acad Sci. 2006;1085:339–52.

    Article  CAS  PubMed  Google Scholar 

  8. Wolinsky H, Glagov S. A lamellar unit of aortic medial structure and function in mammals. Circ Res. 1967;20(1):99–111.

    Article  CAS  PubMed  Google Scholar 

  9. Dingemans KP, Teeling P, Lagendijk JH, Becker AE. Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec. 2000;258(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  10. Niwa K, Perloff JK, Bhuta SM, et al. Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation. 2001;103(3):393–400.

    Article  CAS  PubMed  Google Scholar 

  11. Hasham SN, Guo DC, Milewicz DM. Genetic basis of thoracic aortic aneurysms and dissections. Curr Opin Cardiol. 2002;17(6):677–83.

    Article  PubMed  Google Scholar 

  12. Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121(13):e266–369.

    Google Scholar 

  13. Dietz HC, Cutting GR, Pyeritz RE, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337–9.

    Article  CAS  PubMed  Google Scholar 

  14. Fedak PW, de Sa MP, Verma S, et al. Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg. 2003;126(3):797–806.

    Article  PubMed  Google Scholar 

  15. Neptune ER, Frischmeyer PA, Arking DE, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33(3):407–11.

    Article  CAS  PubMed  Google Scholar 

  16. Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312(5770):117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ng CM, Cheng A, Myers LA, et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 2004;114(11):1586–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gomez D. Al Haj Zen A, Borges LF, et al. Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. J Pathol. 2009;218(1):131–42.

    Article  CAS  PubMed  Google Scholar 

  19. Canadas V, Vilacosta I, Bruna I, Fuster V. Marfan syndrome. Part 1: pathophysiology and diagnosis. Nat Rev Cardiol. 2010;7(5):256–65.

    Article  CAS  PubMed  Google Scholar 

  20. LeMaire SA, Wang X, Wilks JA, et al. Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J Surg Res. 2005;123(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  21. Ikonomidis JS, Jones JA, Barbour JR, et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. J Thorac Cardiovasc Surg. 2007;133(4):1028–36.

    Article  CAS  PubMed  Google Scholar 

  22. Wilton E, Bland M, Thompson M, Jahangiri M. Matrix metalloproteinase expression in the ascending aorta and aortic valve. Interact Cardiovasc Thorac Surg. 2008;7(1):37–40.

    Article  PubMed  Google Scholar 

  23. Xiong W, Knispel RA, Dietz HC, Ramirez F, Baxter BT. Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J Vasc Surg. 2008;47(1):166–72. discussion 172

    Article  PubMed  PubMed Central  Google Scholar 

  24. Girdauskas E, Borger MA, Secknus MA, Girdauskas G, Kuntze T. Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument. Euro J Cardiothorac Surg. 2011;39(6):809–14.

    Article  Google Scholar 

  25. Cotrufo M, Della CA. The association of bicuspid aortic valve disease with asymmetric dilatation of the tubular ascending aorta: identification of a definite syndrome. J Cardiovasc Med (Hagerstown). 2009;10(4):291–7.

    Article  Google Scholar 

  26. Della Corte A, Quarto C, Bancone C, et al. Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell-matrix signaling. J Thorac Cardiovasc Surg. 2008;135(1):8–18, 18 e11–12.

    Article  CAS  Google Scholar 

  27. Andrus BW, O’Rourke DJ, Dacey LJ, Palac RT. Stability of ascending aortic dilatation following aortic valve replacement. Circulation. 2003;108(Suppl 1):II295–9.

    Article  Google Scholar 

  28. Hope MD, Hope TA, Crook SE, et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging. 2011;4(7):781–7.

    Article  PubMed  Google Scholar 

  29. Hope MD, Hope TA, Meadows AK, et al. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology. 2010;255(1):53–61.

    Article  PubMed  Google Scholar 

  30. Topper JN, Cai J, Falb D, Gimbrone MA Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A. 1996;93(19):10417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lehoux S, Tronc F, Tedgui A. Mechanisms of blood flow-induced vascular enlargement. Biorheology. 2002;39(3-4):319–24.

    CAS  PubMed  Google Scholar 

  32. Schaefer BM, Lewin MB, Stout KK, et al. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart. 2008;94(12):1634–8.

    Article  CAS  PubMed  Google Scholar 

  33. Fazel SS, Mallidi HR, Lee RS, et al. The aortopathy of bicuspid aortic valve disease has distinctive patterns and usually involves the transverse aortic arch. J Thorac Cardiovasc Surg. 2008;135(4):901–7, 907 e901-902.

    Article  PubMed  Google Scholar 

  34. Gatehouse PD, Keegan J, Crowe LA, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15(10):2172–84.

    Article  PubMed  Google Scholar 

  35. Barker AJ, Lanning C, Shandas R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng. 2010;38(3):788–800.

    Article  PubMed  Google Scholar 

  36. Golestani R, Razavian M, Nie L, et al. Imaging vessel wall biology to predict outcome in abdominal aortic aneurysm. Circ Cardiovasc Imaging. 2015;8(1)

    Google Scholar 

  37. Prapa M, Ho SY. Risk stratification in bicuspid aortic valve disease: still more work to do. EuroJ Cardiothorac Surg. 2012;41(2):327–8.

    Article  Google Scholar 

  38. Buxton DB. Molecular imaging of aortic aneurysms. Circ Cardiovasc Imaging. 2012;5(3):392–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huntington K, Hunter AG, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30(7):1809–12.

    Article  CAS  PubMed  Google Scholar 

  40. Loscalzo ML, Goh DL, Loeys B, Kent KC, Spevak PJ, Dietz HC. Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am J Med Genet A. 2007;143A(17):1960–7.

    Article  CAS  PubMed  Google Scholar 

  41. Elsheikh M, Casadei B, Conway GS, Wass JA. Hypertension is a major risk factor for aortic root dilatation in women with Turner’s syndrome. Clin Endocrinol (Oxf). 2001;54(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  42. Loffredo CA, Chokkalingam A, Sill AM, et al. Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet A. 2004;124A(3):225–30.

    Article  PubMed  Google Scholar 

  43. Robinson PN, Godfrey M. The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet. 2000;37(1):9–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arrington CB, Sower CT, Chuckwuk N, et al. Absence of TGFBR1 and TGFBR2 mutations in patients with bicuspid aortic valve and aortic dilation. Am J Cardiol. 2008;102(5):629–31.

    Article  CAS  PubMed  Google Scholar 

  45. Niessen K, Karsan A. Notch signaling in cardiac development. Circ Res. 2008;102(10):1169–81.

    Article  CAS  PubMed  Google Scholar 

  46. High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet. 2008;9(1):49–61.

    Article  CAS  PubMed  Google Scholar 

  47. Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4.

    Article  CAS  PubMed  Google Scholar 

  48. McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM 3rd. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007;134(2):290–6.

    Article  CAS  PubMed  Google Scholar 

  49. Kent KC, Crenshaw ML, Goh DL, Dietz HC. Genotype-phenotype correlation in patients with bicuspid aortic valve and aneurysm. J Thorac Cardiovasc Surg. 2013;146(1):158–65. e151

    Article  CAS  PubMed  Google Scholar 

  50. Gomez D, Coyet A, Ollivier V, et al. Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms. Cardiovasc Res. 2011;89(2):446–56.

    Article  CAS  PubMed  Google Scholar 

  51. Shah A, Feng S, Krupp D, et al. Abstract 9035: Epigenetic modifications are associated with ascending thoracic aneurysm formation in patients with bicuspid aortic valve. Circulation. 2012;126:A9035.

    Google Scholar 

  52. Gomez D, Kessler K, Borges LF, et al. Smad2-dependent protease nexin-1 overexpression differentiates chronic aneurysms from acute dissections of human ascending aorta. Arterioscler Thromb Vasc Biol. 2013;33(9):2222–32.

    Article  CAS  PubMed  Google Scholar 

  53. Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature. 2009;461(7261):218–23.

    Article  CAS  PubMed  Google Scholar 

  54. Neri E, Barabesi L, Buklas D, et al. Limited role of aortic size in the genesis of acute type A aortic dissection. Eur J Cardiothorac Surg. 2005;28(6):857–63.

    Article  PubMed  Google Scholar 

  55. Davies RR, Kaple RK, Mandapati D, et al. Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve. Ann Thorac Surg. 2007;83(4):1338–44.

    Article  PubMed  Google Scholar 

  56. Nataatmadja M, West J, Prabowo S, West M. Angiotensin II receptor antagonism reduces transforming growth factor beta and Smad signaling in thoracic aortic aneurysm. Ochsner J. 2013;13(1):42–8.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matina Prapa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Austria, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prapa, M., Gatzoulis, M.A. (2019). Morphology of the Ascending Aorta in Bicuspid Aortic Valve Disease. In: Stanger, O., Pepper, J., Svensson, L. (eds) Surgical Management of Aortic Pathology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4874-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4874-7_37

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4872-3

  • Online ISBN: 978-3-7091-4874-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics