Skip to main content

Adenosine: Transport, Function and Interaction with Receptors in the CNS

  • Conference paper
Basic Aspects of Receptor Biochemistry

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 18))

  • 43 Accesses

Summary

Considerable evidence indicates a modulatory role for adenosine (A) on synaptic transmission in both peripheral and central nervous systems. In vivo and in vitro experiments in the rat hippocampus demonstrate the axonal transport of A derivatives to nerve endings with subsequent stimulus-dependent release. Analysis of the material released from central tissues on electrical stimulation indicates that at least a proportion of the A derivatives collected are recovered in the form of nucleotides, together with A and several breakdown products. This observation, in conjunction with the demonstrable release of ATP from nerve endings, suggests the release of adenine nucleotides with subsequent extracellular breakdown to produce A.

A has been shown to depress both spontaneous and evoked potentials in central neurons. In hippocampal slices the addition of A to the superfusion medium in μM concentrations leads to a reduction in the amplitude of evoked synaptic potentials. Pharmacological studies of the effects of various nucleoside derivatives on synaptic activity in this system indicate that this effect is mediated via an Al-adenosine receptor which can be distinguished from that mediating a stimulation of cyclic AMP synthesis (the A2-receptor). Taken together, these observations suggest that the modulatory effect of adenine derivatives in the CNS depends on (1) the release of nucleotides and subsequent breakdown to A and (2) the presence of Al-adenosine receptors.

The last step in the production of A from nucleotides is catalyzed by 5′-nucleotidase. EM-cytochemical studies demonstrate 5′-nucleotidase in association with several structures including astrocytic processes surrounding nerve endings and with some synapses. Therefore, the availability of 5′-nucleotidase is considered an important factor determining the production of A.

The availability of Al-adenosine receptors is a further factor determining the physiological effectiveness of A. The amplitude of the A-induced depression of synaptic transmission in the rat hippocampus is related to the local concentration of Al-receptors estimated using an in vitro ligand binding assay.

These considerations lead to the conclusion that the release of nucleotides, their breakdown to A via 5′-nucleotidase and the availability of A1-adenosine receptors are important factors determining the overall neuromodulatory effect of adenine derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruns, R.F., Daly, J. W, Snyder, S. H.: Adenosine receptors in brain membranes: binding of N6-cyclohexyl[3H]adenosine and 1.3-diethyl-8[3H]phenylxanthine. Proc. Natl. Acad. Sci. U.S.A. 77, 5547–5551(1980).

    Google Scholar 

  • Daly, J. W.: Adenosine receptors: targets for future drugs. J. Med. Chem. 25, 197–207 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Drury, A. N., Szent-György, A.: The physiological activity of adenine compounds with special reference to their action on the mammalian heart. J. Physiol. (Lond.) 68, 213–237 (1929).

    Article  CAS  Google Scholar 

  • Hunt, S. P., Künzle, H.: Bidirectional movement of label and transneuronal transport phenomena after injection of [3H]adenosine into the central nervous system. Brain Res. 112, 127–132 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg, G. W, Barron, K. D., Schubert, P.: Cytochemical localization of 5’-nucleotidase in glial plasma membranes. Brain Res. 158, 247–257 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Kuroda, Y.: Physiological roles of adenosine derivatives which are released during neurotransmission in mammalian brain. J. Physiol. (Paris) 74, 463–470 (1978).

    CAS  Google Scholar 

  • Kuroda, Y., Saito, M., Kobayashi, K.: Concomitant changes in cyclic AMP level and postsynaptic potentials of olfactory cortex slices induced by adenosine derivatives. Brain Res. 109, 196–201 (1976).

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. S., Reddington, M., Schubert, P., Kreutzberg, G. W: Regulation of the strength of adenosine modulation in the hippocampus by a differential distribution of the density of Al-receptors. Brain Res. (in press, 1983).

    Google Scholar 

  • Lee, K. S., Schubert, P., Gribkoff, V, Sherman, B., Lynch, G.: A combined in vivo/in vitro study of the presynaptic release of adenosine derivatives in the hippocampus. J. Neurochem. 38, 80–83 (1981).

    Article  Google Scholar 

  • Lewis, M. E., Patel,J., Edley, S. M., Marangos, P.J.: Autoradiographic visualization of rat brain adenosine receptors using N6-cyclohexyl[3H]adenosine. Eur. J. Pharmacol. 73, 109–110 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Phillis, J. W, Kostopoulos, G. K., Limacher, J.J.: Depression of corticospinal cells by various purines and pyrimidines. Can. J. Physiol. Pharmacol. 52, 1226–1229 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Phillis, J. W, Wu, P. H.: The role of adenosine and its nucleotides in central synaptic transmission. Progr. in Neurobiology 16, 187–239 (1981).

    Google Scholar 

  • Pull, I., Mcllwain, H.: Adenine mononucleotides and their metabolites liberated from and applied to isolated tissue of the mammalian brain. Neurochem. Res. 2, 203–216 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Reddington, M., Lee, K. S., Schubert, P.: An Al-adenosine receptor, characterized by [3H]cyclohexyladenosine binding, mediates the depression of evoked potentials in a rat hippocampal slice preparation. Neurosci. Lett. 28, 275–279 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Reddington, M., Lee, K. S., Schubert, P., Kreutzberg G. W: Biochemical and electrophysiological characterization of adenosine receptors in rat brain. In: CNS Receptors: from Molecular Pharmacology to Behaviour (DeFeudis, F., Mandel, P., eds.). New York: Raven Press. 1983 (in press).

    Google Scholar 

  • Reddington, M., Schubert, P.: Parallel investigations of the effects of adenosine on evoked potentials and cyclic AMP accumulation in hippocampal slices. Neurosci. Lett. 14, 37–42 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Rose, G., Schubert, P.: Release and transfer of [3H] adenosine derivatives in the cholinergic septal system. Brain Res. 121, 353–357 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Sattin, A., Rall, T. W.: The effect of adenosine and adenine nucleotides on the cyclic adenosine 3.5’-phosphate content of guinea pig cerebral cortex slices. Molec. Pharmacol. 6, 13–23 (1970).

    CAS  Google Scholar 

  • Schubert, P., Kreutzberg G. W.: Axonal transport of adenosine and uridine derivatives and transfer to postsynaptic neurons. Brain Res. 76, 526–530 (1974).

    Article  CAS  PubMed  Google Scholar 

  • Schubert, P., Komp, W, Kreutzberg, G. W.: Correlation of 5’-nucleotidase activity and selective transneuronal transfer of adenosine in the hippocampus. Brain Res. 168, 419–424 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Schubert, P., Kreutzberg, G. W.: [3H]adenosine, a tracer for neuronal connectivity. Brain Res. 85, 317–319 (1975).

    Article  CAS  PubMed  Google Scholar 

  • Schubert, P., Lee, K. S., West, M., Deadwyler, S., Lynch, G.: Stimulation-dependent release of 3H-adenosine derivatives from central axon terminals to target neurons. Nature (Lond.) 260, 541–542 (1976).

    Article  CAS  Google Scholar 

  • Schubert, P., Mitzdorf, U.: Analysis and quantitative evaluation of the depressive effect of adenosine on evoked potentials in hippocampal slices. Brain Res. 172, 186–190 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Schubert, P., Rose, G., Lee, K. S., Lynch, G., Kreutzberg G. W.: Axonal release and transfer of nucleoside derivatives in the entorhinal-hippocampal system: an autoradiographic study. Brain Res. 134, 347–352 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Schwabe, U., Trost, T: Characterization of adenosine receptors in rat brain by (—) [3I11N6-phenylisopropyladenosine. N.-S. Arch. Pharmacol. 313, 179–187 (1980).

    Article  CAS  Google Scholar 

  • Smellie, F. W., Daly, J. W., Dunwiddie, T. V., Hoffer, B.J.: The dextro and levorotary isomers of N-phenylisopropyladenosine: stereospecific effects on cyclic AMP-formation and evoked synaptic responses in brain slices. Life Sci. 25, 1739–1748 (1979).

    Article  CAS  PubMed  Google Scholar 

  • White, T.D.: Release of ATP from a synaptosomal preparation by elevated extracellular K+ and by veratridine. J. Neurochem. 30, 329–336 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Williams, M., Risley, E.A.: Biochemical characterization of putative purinergic receptors by using 2-chloro[3H]adenosine, a stable analog of adenosine. Proc. Natl. Acad. Sci. U.S.A. 77, 6892–6896 (1980).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wise, S. P., Jones, E. G., Berman, N.: Direction and specificity of the axonal and transcellular transport of nucleosides. Brain Res. 139, 197–217 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Wu, P. H., Phillis, J. W.: Distribution and release of adenosine triphosphate in rat brain. Neurochem. Res. 3, 563–571 (1978).

    CAS  Google Scholar 

  • Wu, P. H., Phillis, J. W., Balls, K., Rinaldi, B.: Specific binding of 2-[3H] chloroadenosine to rat brain cortical membranes. Can. J. Physiol. Pharmacol. 58, 576–579 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Wien

About this paper

Cite this paper

Kreutzberg, G.W., Reddington, M., Lee, K.S., Schubert, P. (1983). Adenosine: Transport, Function and Interaction with Receptors in the CNS. In: Goldstein, M., Jellinger, K., Riederer, P. (eds) Basic Aspects of Receptor Biochemistry. Journal of Neural Transmission, vol 18. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4408-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4408-4_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4410-7

  • Online ISBN: 978-3-7091-4408-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics