Skip to main content

Fluid Shock Wave Generation at Solid-Material Discontinuity Surfaces in Porous Media

  • Chapter

Part of the book series: CISM Courses and Lectures ((CISM,volume 535))

Abstract

A general set of boundary conditions at the interface between dissimilar fluid-filled porous matrices is established starting from an extended Hamilton-Rayleigh principle. These conditions do include inertial effects. Once linearized, they encompass boundary conditions relative to volume Darcy-Brinkman and to surface Saffman-Beavers-Joseph-Deresiewicz dissipation effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

D Bibliography

  • Alazmi B., Vafai K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)

    Article  MATH  Google Scholar 

  • Albers B.: Monochromatic surface waves at the interface between poroelastic and fluid half-spaces. Proc. R. Soc. Lond. A 462, 701723 (2006)

    MathSciNet  Google Scholar 

  • Allaire G.: Homogenization of the Stokes flow in a connected porous medium. Asymptotic Anal. 2,3, 203–222 (1989).

    MathSciNet  MATH  Google Scholar 

  • Allaire G.: Homoge ne isation des e quations de Stokes dans un domaine perfore de petits trous re partis pe riodiquement. C. R. Acad. Sci. Paris, Ser. I, 309,11, 741–746 (1989).

    MathSciNet  MATH  Google Scholar 

  • Allaire G.: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Arch. Rational Mech. Anal., 113, 209298 (1991).

    Google Scholar 

  • Allaire G.: Homogenization of the Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math., XLIV, 605–641 (1991).

    Article  MathSciNet  Google Scholar 

  • Allaire, G.: Continuity of the Darcys law in the low-volume fraction limit. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18, 475–499 (1991)

    MathSciNet  MATH  Google Scholar 

  • Altay G., Dokmeci M.C.: On the equations governing the motion of an anisotropic poroelastic material. Proc. R. Soc. A 462, 2373–2396 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Baek S., Srinivasa A.R.: Diffusion of a fluid through an elastic solid undergoing large deformation. Int. J. Non-Linear Mech. 39, 201–218 (2004)

    Article  MATH  Google Scholar 

  • Batra G., Bedford A., Drumheller D.S.: Applications of Hamiltons principle to continua with singular surfaces. Arch. Rational Mech. Anal. 93, 223251 (1986)

    Article  MathSciNet  Google Scholar 

  • Bedford A., Drumheller D.S.: A variational theory of immiscible mixtures. Arch. Rational Mech. Anal. 68, 37–51 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Bedford A., Drumheller D.S.: A variational theory of porous media. Int. J. Solids Struct. 15, 967–980 (1979) 20 CISM Course C-1006 Udine, July 12–16 2010

    Article  MathSciNet  MATH  Google Scholar 

  • Bedford A., Drumheller D.S.: Recent advances: theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 863–960 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  • Biot M.A.: General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. 23, 91–96 (1956)

    MathSciNet  MATH  Google Scholar 

  • Biot M.A.: Theory of propagation of elastic waves in fluid-saturated porous solid. J. Acoust. Soc. Am. 28, 168–191 (1956)

    Article  MathSciNet  Google Scholar 

  • Biot M.A., Willis D G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24 594–601 (1957)

    MathSciNet  Google Scholar 

  • Biot M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Biot M.A.: Variational principles for acoustic gravity waves. Phys. Fluids 6, 772–778 (1963)

    Article  MathSciNet  Google Scholar 

  • Beavers G.S., Joseph D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  • Burridge R., Keller J.B.: Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am. 70:4, 1140–1146 (1981)

    Article  MATH  Google Scholar 

  • Casertano L., Oliveri del Castillo A., Quagliariello M.T.: Hydrodynamics and geodynamics in Campi Flegrei Area of Italy. Nature 264, 161–164 (1976)

    Article  Google Scholar 

  • Caviglia G., Morro A.:Harmonic waves in thermo-visco-elastic solids.Int. J. Eng. Sci.43, 1323–1336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Chandesris M., Jamet D.: Boundary conditions at a planar fluidporous interface for a Poiseuille flow. Int. J. Heat and Mass Transf. 49, 2137–2150 (2006).

    Article  MATH  Google Scholar 

  • Chandesris M., Jamet D.: Boundary conditions at a fluidporous interface: an a priori estimation of the stress jump coefficients. Int. J. Heat and Mass Transf. 50, 3422–3436 (2007)

    Article  MATH  Google Scholar 

  • Chateau X., Dormieux L.: Homoge ne isation dun milieu poreux non sature: Lemme de Hill et applications. C.R. Acad. Sci. Paris 320, Serie IIb, 627–634 (1995)

    Google Scholar 

  • Chateau X., Dormieux L.: Approche microme canique du comportement dun milieu poreux non sature. C. R. Acad. Sci. Paris 326, Serie II, 533–538 (1998)

    Google Scholar 

  • Cieszko M., Kubik J.: Interaction of elastic waves with a fluid-saturated porous solid boundary. J. of Theor. Appl. Mech. 36, 561580 (1998)

    Google Scholar 

  • Cieszko M. Kubik J.: Derivation of matching conditions at the contact surface between fluid-saturated porous solid and bulk fluid. Transp. Porous Med. 34, 319336 (1999)

    Article  Google Scholar 

  • Coussy O., Bourbie T.: Propagation des ondes acoustiques dans les milieux poreux sature s. Rev. Inst. Fr. Pet. 39, 47–66 (1984)

    Google Scholar 

  • Coussy O. Dormieux L. Detournay E.: From mixture theory to Biots approach for porous media. Int. J. Solids Struct. 35, 46194635 (1998)

    Article  Google Scholar 

  • Coussy O.: Poromechanics, John Wiley Sons, Chichester (2004)

    Google Scholar 

  • Cowin SC: Bone Mechanics Handbook, Boca Raton, FL: CRC Press (2001)

    Google Scholar 

  • Debergue P. et al.: Boundary conditions for the weak formulation of the mixed (u,p) poroelasticity problem. J. Acoust. Soc. Am. 106: 5, 2383–2390 (1999)

    Article  Google Scholar 

  • de Boer R.: Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl. Mech. Rev. 49: 4, 201–262 (1996)

    Article  Google Scholar 

  • de Boer R.: Contemporary progress in porous media theory. Appl. Mech. Rev. 53, 323370 (2000)

    Google Scholar 

  • de Boer R.: Theoretical poroelasticity a new approach. Chaos Solitons Fractals 25, 861–878 (2005)

    Article  MATH  Google Scholar 

  • de Buhan P., Dormieux L., Chateau X.: A micro-macro approach to the constitutive formulation of large strain poroelasticity. Poromechanics a tribute to Maurice A. Biot. Thimus et al., Rotterdam (1998) 21 CISM Course C-1006 Udine, July 12–16 2010

    Google Scholar 

  • de Buhan P., Chateau X., Dormieux L.: The constitutive equations of finite strain poroelasticity in the light of a micro-macro approach. Eur. J. Mech. A/Solids. 17, 909–921 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Cryer C.W.: A comparison of the three dimensional consolidation theories of Biot and Terzaghi. Q. J. Mech. Appl. Math. 16: 4, 401–412 (1963)

    Article  MATH  Google Scholar 

  • de la Cruz V., Hube J., Spanos T.J.T.: Reflection and transmission of seismic waves at the boundaries of porous media. Wave Motion 16, 323–338 (1992)

    Article  Google Scholar 

  • dellIsola F., Rosa L., Wozniak C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127, 1:4, 165–182 (1998)

    Article  MathSciNet  Google Scholar 

  • dellIsola, F., Guarascio, M., Hutter, K.: A variational approach for the deformation of a saturated porous solid. A second gradient theory extending Terzaghis effective stress principle. Arch. Appl. Mech. 70, 323–337 (2000).

    Article  Google Scholar 

  • dellIsola, F., Sciarra, G., Batra, R.C.: Static Deformations of a Linear Elastic Porous Body filled with an Inviscid Fluid. J. Elasticity 72, 99–120 (2003).

    Article  MathSciNet  Google Scholar 

  • Deresiewicz H.: The effect of boundaries on wave propagation in a liquidfilled porous solid: I. Reflection of plane waves at a free plane boundary (non-dissipative case). Bull. Seismol. Soc. Am. 50, 599607 (1960)

    MathSciNet  Google Scholar 

  • Deresiewicz H.: The effect of boundaries on wave propagation in a liquid-filled porous solid: III. Reflec-tion of plane waves at a free plane boundary (general case) Bull. Seismol. Soc. Am. 52, 595625 (1962)

    Google Scholar 

  • Deresiewicz H.: A note on Love waves in a homogeneous crust overlying an inhomogeneous substratum. Bull. Seismol. Soc. Am. 52, 639–645 (1962)

    Google Scholar 

  • Deresiewicz H.: The effect of boundaries on wave propagation in a liquidfilled porous solid: IV. surface in a half-space. Bull. Seismol. Soc. Am. 50, 627–638 (1962)

    MathSciNet  Google Scholar 

  • Deresiewicz H.: On uniqueness in dynamic poroelasticity. Bull. Seismol. Soc. Am. 53, 783–788 (1963)

    Google Scholar 

  • Deresiewicz H.: The effect of boundaries on wave propagation in a liquidfilled porous solid: V. Trans-mission across a plane interface. Bull. Seismol. Soc. Am. 54, 409–416 (1964)

    Google Scholar 

  • Deresiewicz H.: The effect of boundaries on wave propagation in a liquidfilled porous solid: VII. Surface waves in a half-space in the presence of a liquid layer. Bull. Seismol. Soc. Am. 54, 425430 (1964)

    Google Scholar 

  • Dormieux L., Coussy O., de Buhan P.: Mode lisation me canique dun milieu polyphasique par la me thode des puissances virtuelles. C.R. Acad. Sci. Paris. 313, Serie IIb, 863–868 (1991)

    MATH  Google Scholar 

  • Dormieux L., Stolz C.: Approche variationelle en poroe lasticite. C.R. Acad. Sci. Paris, 315, Serie IIb, 407–412 (1992)

    MATH  Google Scholar 

  • Dormieux L., Kondo D. and Ulm F.-J. Microporomechanics Wiley (2006).

    Google Scholar 

  • Fillunger P.: Erbdaumechanik. Selbst Verlag des Verfassers, Wien (1936).

    Google Scholar 

  • Gavrilyuk S.L., Gouin H., Perepechko Yu.V.: A variational principle for two-fluid models. C.R. Acad. Sci. Paris, 324, Serie IIb, 483–490 (1997)

    MATH  Google Scholar 

  • Gavrilyuk S.L., Gouin H., Perepechko Yu.V.: Hyperbolic Models of Homogeneous Two-Fluid Mixtures, Meccanica 33, 161–175(1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Gavrilyuk S., Perepechko Yu. V.: Variational approach to constructing hyperbolic models of two-velocity media. J. Appl. Mech. Technical Phys. 39:5, 684–698 (1998)

    Article  MathSciNet  Google Scholar 

  • Gavrilyuk S.L., Gouin H.: A new form of governing equations of fluids arising from Hamiltons principle. Int. J. Eng. Sci. 37, 1495–1520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Gavrilyuk S., Saurel R.: Rankine-Hugoniot relations for shocks in heterogeneous mixtures J. Fluid Mech. 575, 495–507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Germain P.: Cours de me canique des milieux continus tome 1 the orie ge ne rale, Masson (1973)

    Google Scholar 

  • Gouin H.: Variational theory of mixtures in continuum mechanics. Eur. J. Mech., B/Fluids 9, 469–491 (1990)

    MathSciNet  MATH  Google Scholar 

  • Gouin H., Gavrilyuk S.L.: Hamiltons principle and Rankine-Hugoniot conditions for general motions of mixtures. Meccanica 34, 39–47 (1998) 22 CISM Course C-1006 Udine, July 12–16 2010 Goyeau B. et al.: Momentum transport at a fluidporous interface. Int. J. Heat Mass Transf. 46, 4071–4081 (2003)

    Article  MathSciNet  Google Scholar 

  • Haber S., Mauri R.: Boundary conditions for Darcys flow through porous media. Int. J. Multiphase Flow 9, 561574 (1983)

    Article  Google Scholar 

  • Hassanizadeh S. M. Gray W.: Boundary and interface conditions in porous media. Water Resources Res. 25, 17051715 (1989)

    Google Scholar 

  • Hornung U.: Homogenization and Porous Media. Interdiscip. Appl. Math., vol. 6, Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  • Houlsbya G.T., Puzrin A.M.: Rate-dependent plasticity models derived from potential functions. J. Rheol. 46(1), 113–126 (2002)

    Article  Google Scholar 

  • Jager W., Mikelic A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    Article  MathSciNet  Google Scholar 

  • Kaasschieter E.F., Frijns A.J.H.: Squeezing a sponge: a three-dimensional solution in poroelasticity Computational Geosciences 7: 49–59, (2003).

    Article  MathSciNet  MATH  Google Scholar 

  • Kosin ski W.: Field Singularities and Wave Analysis in Continuum Mechanics. PWN-Polish Scientific Publishers, Warszawa (1986)

    MATH  Google Scholar 

  • Kubik J., Cieszko M.: Analysis of matching conditions at the boundary surface of a fluid-saturated porous solid and a bulk fluid: the use of Lagrange multipliers. Continuum Mech. Thermodyn. 17:4, 351–359 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov A.V.: Influence of the stress jump condition at the porous medium/clear fluid interface on a flow at porous wall. Int. Comm. Heat Mass Transf. 24, 401–410. (1997)

    Article  Google Scholar 

  • Le Bars M., Grae Worster M.: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lee C.K.: Flow and deformation in poroelastic media with moderate load and weak inertia. Proc. R. Soc. Lond. A 460, 20512087 (2004)

    Google Scholar 

  • Levy T., Sanchez-Palencia E.: On boundary conditions for fluid flow in porous media Int. J. Eng. Sci. 13, 923–940 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Madeo A., dellIsola F., Ianiro N., Sciarra G.: A variational deduction of second gradient poroelasticity II: an application to the Consolidation Problem. J. Mech. Mater. Struct. 3:4, 607–625 (2008)

    Article  Google Scholar 

  • Mandel J.: Consolidation des sols (e tude mathe matique). Geotechnique 3, 287–299 (1953)

    Article  Google Scholar 

  • Marle C.M.: On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media. Int. J. Eng. Sci. 20:5, 643662 (1982)

    Article  MathSciNet  Google Scholar 

  • Mobbs S.D.: Variational principles for perfect and dissipative fluid flows. Proc. R. Soc. Lond. A 381, 457468 (1982)

    Google Scholar 

  • Neale G., Nader W.: Practical significance of Brinkmans extension of Darcys law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Eng. 52, 475–478 (1974)

    Article  Google Scholar 

  • Ochoa-Tapia J.A., Whitaker S.: Momentum transfer at the boundary between a porous; medium and a homogeneous fluid I. Theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995)

    Article  MATH  Google Scholar 

  • Ochoa-Tapia J. A., Whitaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid II. Comparison with experiment. Int. J. Heat Mass Transf. 38, 2647–2655 (1995).

    Article  Google Scholar 

  • Ochoa-Tapia J.A., Whitaker S.: Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects. J. Porous Media 1, 201–217 (1998).

    MATH  Google Scholar 

  • Orsi G., Petrazzuoli S.M., Wohletz K.: Mechanical and thermo-fluid behaviour during unrest at the Campi Flegrei caldera (Italy) J. Vulcanol. Geotherm. Res. 91, 453–470 (1999)

    Article  Google Scholar 

  • Pan Y., Horne R.N.: Generalized Macroscopic Models for Fluid Flow in Deformable Porous Media. Theories Transport in Porous Media 45: 1–27, 2001.

    Article  MathSciNet  Google Scholar 

  • Prat M.: On the boundary conditions at the macroscopic level’ Transp. Porous Med. 4, 259–280 (1988) 23 CISM Course C-1006 Udine, July 12–16 2010

    Google Scholar 

  • Poulikakos D., Kazmierczak M.: Forced convection in a duct partially filled with a porous material. J. Heat Transf. 109, 653–662 (1987)

    Article  Google Scholar 

  • Quiroga-Goode G., Carcione J.M.: Heterogeneous modelling behaviour at an interface in porous media. Comput. Geosciences 1, 109125 (1997)

    MathSciNet  Google Scholar 

  • Rajagopal K.R. et al.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Eng. Sci. 24, 14531463 (1986)

    Article  MathSciNet  Google Scholar 

  • Rajagopal K.R., Tao L.: Mechanics of mixtures. Ser. Adva. Math. Appl. Sci. Vol. 35 (1995)

    Google Scholar 

  • Rasolofosaon N.J.P., Coussy O.: Propagation des ondes acoustiques dans les milieux poreux sature s: effets dinterface I. Rev. Inst. Fr. Pet. 40, 581–594 (1985)

    Google Scholar 

  • Rasolofosaon N.J.P., Coussy O.: Propagation des ondes acoustiques dans les milieux poreux sature s: effets dinterface II. Rev. Inst. Fr. Pet. 40, 785802 (1985)

    Google Scholar 

  • Rasolofosaon N.J.P., Coussy O.: Propagation des ondes acoustiques dans les milieux poreux sature s: effets dinterface III. Rev. Inst. Fr. Pet. 41, 91103 (1986)

    Google Scholar 

  • Saffman P. G.: On the boundary conditions at the surface of a porous medium. Stud. Appl. Math. L, 93–101 (1971)

    Google Scholar 

  • Sciarra G., dellIsola F., Ianiro N., Madeo A.: A variational deduction of second gradient poroelasticity I: general theory. J. Mech. Mater. Struct. 3:3, 507–526 (2008)

    Article  Google Scholar 

  • Seliger R.L., Whitham G.B.: Variational principles in continuum mechanics. Proc. R. Soc. Lond. A 305, 1–25 (1968)

    Article  MATH  Google Scholar 

  • Sharma M.D.: Wave propagation across the boundary between two dissimilar poroelastic solids. J. Sound Vib. 314, 657–671 (2008)

    Article  Google Scholar 

  • Sonnet A.M., Maffettone P.L. and Virga E.G.: Continuum theory for nematic liquid crystals with tensorial order. J. Non-Newtonian Fluid Mech. 119 51–59 (2004)

    Article  MATH  Google Scholar 

  • V. Terzaghi K.: Theoretical soil mechanics. John Wiley Sons, Chichester (1943)

    Book  Google Scholar 

  • Savare G., Tomarelli F.: Superposition and chain rule for bounded Hessian functions. Adv. Math. 140, 237–281 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Vafai K., Thiyagaraja R.: Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transf. 30, 1391–1405 (1987)

    Article  MATH  Google Scholar 

  • Vafai K., Kim S.J.: Analysis of surface enhancement by a porous substrate. J. Heat Transf. 112, 700–706 (1990)

    Article  Google Scholar 

  • Valde s-Paradaa F.J., Goyeaub B., Ochoa-Tapiaa J.A.: Diffusive mass transfer between a microporous medium and a homogeneous fluid: Jump boundary conditions. Chem. Eng. Sci. 61 1692–1704 (2006)

    Article  Google Scholar 

  • Wilmanski K.: Waves in porous and granular materials. In: Kinetic and Continuum Theories of Granular and Porous Media, 131–185, K. Hutter and K. Wilmanski (eds.), Springer Wien New York (1999)

    Google Scholar 

  • Wilmanski K.: A few remarks on Biots model and linear acoustics of poroelastic saturated materials. Soil Dyn. Earthq. Eng. 26, 509–536 (2006)

    Article  Google Scholar 

  • Yang J.: Importance of flow condition on seismic waves at a saturated porous solid boundary. J. Sound Vib. 221:3, 391413 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 CISM, Udine

About this chapter

Cite this chapter

dell’Isola, F., Seppecher, P., Madeo, A. (2011). Fluid Shock Wave Generation at Solid-Material Discontinuity Surfaces in Porous Media. In: dell’Isola, F., Gavrilyuk, S. (eds) Variational Models and Methods in Solid and Fluid Mechanics. CISM Courses and Lectures, vol 535. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0983-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0983-0_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0982-3

  • Online ISBN: 978-3-7091-0983-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics