Skip to main content

Polysaccharide-Acting Enzymes and Their Applications

  • Chapter
  • First Online:
The European Polysaccharide Network of Excellence (EPNOE)

Abstract

Biobased economy is expected to grow substantially in Europe within the coming 20 years. An important part of the bioeconomy is biorefineries in which biomass is processed in a sustainable manner to various exploitable products and energy. Bioeconomy can be seen as an expansion of the biorefinery concept as it also includes the exploitation of biotechnology in processing of non-biological raw materials or production of non-bio products exploiting certain biological principles.

Enzymes offer a selective and efficient means to convert biomass and its components including polysaccharides into chemicals, materials, energy, food and feed in a sustainable manner. Due to their specificity enzymes are powerful tools especially in the targeted modification of biomass components. Furthermore, enzymes can be used to overcome some of the challenges related to the utilisation of biomass. Compared to traditional manufacturing systems, biomass can be processed by enzymes in mild conditions with significantly less energy, water and without the need of aggressive chemicals. A wide variety of potential enzymes suitable for processing and upgrading of lignocellulosic polysaccharides and polysaccharide -based materials is currently commercially available and novel enzymes are actively searched for. The role of these enzymes in future lignocellulosic polysaccharide processing and up-grading is dependent on the value addition and economical feasibility reached as well as the wide industrial acceptance of the bioprocessing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger J, Viksø-Nielsen A, Meyer AS (2010) Factors affecting xylanase functionality. In: Viikari L, Grönqvist S, Kruus K, Pere J, Siika-aho M, Suurnäkki A. Industrial biotechnology in the paper and pulp sector, In: Industrial Biotechnology (Eds. Soetaert W. and Vandamme, E.), Wiley-VCH Published Online: 29 Apr 2010

    Google Scholar 

  • Aracri E, Vidal T, Ragauskas A (2011) Wet strength development in sisal cellulose fibers by effect of a laccase–TEMPO treatment. Carbohydr Polym 84:1384–1390

    CAS  Google Scholar 

  • Awano T, Takabe K, Fujita M (1998) Localization of glucuronoxylans in Japanese beech visualized by immunogold labelling. Protoplasma 202:213–222

    CAS  Google Scholar 

  • Bechtold T, Schimper CB (2010) Hydrolysis of regenerated textile fibres and other materials. In: Niedszstrasz WA, Cavaco-Paulo A (eds) Advances in textile biotechnology. Woodhead Publishing Ltd., pp 312–327

    Google Scholar 

  • Bedford MR (2000) Exogenous enzymes in monogastric nutrition—their current value and future benefits. Anim Feed Sci Technol 86:1–13

    CAS  Google Scholar 

  • Bendayan M (1989) The enzyme-gold cytochemical approach: a review. In: Hayat MA (ed) Colloidal gold. Principles, methods and applications. Academic, San Diego

    Google Scholar 

  • Berrin J-G, Juge N (2008) Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnol Lett 30:1139–1150

    PubMed  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    PubMed  CAS  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial beta-glucosidases: cloning, properties and applications. Crit Rev Biotechnol 22:375–407

    PubMed  CAS  Google Scholar 

  • Biekman ESA, Kroesehoedeman HI, van Dijk C (1993) Study of the enzymatic maceration kinetics of potatoes in a rotating perforated drum reactor. Food Biotechnol 7(2):127–141

    Google Scholar 

  • Biely P, Mastihubova M, Tenkanen M, Eyzaguirrec J, Li X-L, Vrˇsanska M (2011) Action of xylan deacetylating enzymes on monoacetyl derivatives of 4-nitrophenyl glycosides of β-D-xylopyranose and α-L-arabinofuranose. J Biotechnol 151:137–142

    PubMed  CAS  Google Scholar 

  • Biely P, de Vries RP, Vrsanska M, Visser J (2000) Inverting character of α-glucuronidase A from Aspergillus tubingensis. Biochim Biophys Acta 1474:360–364

    PubMed  CAS  Google Scholar 

  • Bohrn R, Potthast A, Schiehser S, Rosenau T, Sixta H, Kosma P (2006) The FDAM method: determination of carboxyl profiles in cellulosic materials by combining group-selective fluorescence labelling with GPC. Biomacromolecules 7(6):1743–1750

    PubMed  CAS  Google Scholar 

  • Bonnin E, Clavurier K, Daniel S, Kauppinen S, Mikkelsen JDM, Thibault J-F (2008) Pectin acetylesterases from Aspergillus are able to deacetylate homogalacturonan as well as rhamnogalacturonan. Carbohydr Polym 74(3):411–418

    CAS  Google Scholar 

  • Bragd PL, Van Bekkum H, Besemer AC (2004) TEMPO mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27(February):49–66

    CAS  Google Scholar 

  • Brumer H, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through chemoenzymatic modification of xyloglucan. J Am Chem Soc 126:5715–5721

    PubMed  CAS  Google Scholar 

  • Buchert J, Carlsson G, Viikari L, Ström G (1996) Surface characterization of unbleached kraft pulps by enzymatic peeling and ESCA. Holzforschung 50:69–74

    CAS  Google Scholar 

  • Cairns JRK, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67:3389–3405

    Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–238

    PubMed  CAS  Google Scholar 

  • Carbohydrate Active Enzyme Database, http://www.cazy.com

  • Coenen GJ, Bakx EJ, Verhoef RP, Schols H, Voragen AGJ (2007) Identification of the connecting linkage between homo- or xylogalacturonan and rhamnogalacturonan type I. Carbohydr Polym 70(2):224–235

    CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23

    PubMed  CAS  Google Scholar 

  • Courtin CM, Roelants A, Delcour JA (1999) Fractionation reconstruction experiments provide insight into the role of endoxylanases in bread making. J Agric Food Chem 47:1870–1877

    PubMed  CAS  Google Scholar 

  • Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647–652

    PubMed  CAS  Google Scholar 

  • Daas PJH, Arisz PW, Schols HA, de Ruiter GA, Voragen AGJ (1998) Analysis of partially methyl-esterified galacturonic acid oligomers by high-performance anion-exchange chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem 257(2):195–202

    PubMed  CAS  Google Scholar 

  • Daas PJH, Meyer-Hansen K, Schols HA, de Ruiter GA, voragen AGJ (1999) Investigation of the non-esterified galacturonic acid distribution in pectin with endopolygalacturonase. Carbohydr Res 318(1–4):135–145

    CAS  Google Scholar 

  • Daas PJH, Voragen AGJ, Shcols H (2000) Investigation of the galacturonic acid distribution of pectin with enzymes part 2 - Characterization of non-esterified galacturonic acid sequences in pectin with endopolygalacturonase. Carbohydr Res 326(2):120–129

    PubMed  CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    PubMed  CAS  Google Scholar 

  • de Wet BJM, van Zy WH, Prior BA (2006) Characterization of the Aureobasidium pullulans α-glucuronidase expressed in Saccharomyces cerevisiae. Enzyme Microb Technol 38:649–656

    Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial Mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216

    PubMed  CAS  Google Scholar 

  • Ebbelaar MEM, Tucker GA, Laats MM, Dijk C, Stolle-Smits T, Recourt K (1996) Characterization of pectinases and pectin methylesterase cDNAs in pods of green beans (Phaseolus vulgaris L). Plant Mol Biol 31(6):1141–1151

    PubMed  CAS  Google Scholar 

  • Fazary AE, Ju Y-H (2007) Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochim Biophys Sin 39:811–828

    PubMed  CAS  Google Scholar 

  • Filonova L, Gunnarsson LC, Daniel G, Ohlin M (2007) Synthetic xylan-binding modules for mapping of pulp fibres and wood sections. BMC Plant Biol 7:54–63

    PubMed  Google Scholar 

  • Gallardo O, Fernandez-Fernandez M, Valls C, Valenzuela SV, Roncero MB, Vidal T, Díaz P, Pastor FIJ (2010) Characterization of a family GH5 xylanase with activity on neutral oligosaccharides and evaluation as a pulp bleaching aid. Appl Environ Microbiol 76:6290–6294

    PubMed  CAS  Google Scholar 

  • Garcıa-Aparicio M, Ballesteros M, Manzanares P, Ballesteros I, Gonzalez A, Negro JM (2007) Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl Biochem Biotechnol 137–140:353–65

    PubMed  Google Scholar 

  • Gilbert H, Hazlewood G (1993) Bacterial cellulases and xylanases. J Gen Microbiol 39:187–194

    Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: A review. Bioresour Technol 101:4775–4800

    PubMed  Google Scholar 

  • Gosalbes MJ, Pérez-González JA, González R, Navarro A (1991) Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta- (1,3)-(1,4)-glucanase. J Bacteriol 173:7705–7710

    PubMed  CAS  Google Scholar 

  • Guillotin SE, Bakx EJ, Boulenguer J, Mazoyer J, Schols HA, Voragen AGJ (2005) Populations having different GalA blocks characteristics are present in commercial pectins which are chemically similar but have different functionalities. Carbohydr Polym 60(3):391–398

    CAS  Google Scholar 

  • Guillotin SE, Mey N, Ananta E, Boulenguer P, Schols HA, Voragen AGJ (2006) Chromatographic and enzymatic strategies to reveal differences between amidated pectins on a molecular level. Biomacromolecules 7(6):2032–2037

    PubMed  CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    PubMed  Google Scholar 

  • Henrissat B et al (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094

    PubMed  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    PubMed  Google Scholar 

  • Hilz H, Williams P, Williams P, Doco T, Schols HA, Voragen AGJ (2006) The pectic polysaccharide rhamnogalacturonan II is present as a dimer in pectic populations of bilberries and black currants in muro and in juice. Carbohydr Polym 65(4):521–528

    CAS  Google Scholar 

  • Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Bek QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59(4–5):409–418

    PubMed  CAS  Google Scholar 

  • Hyvolution http://www.hyvolution.nl

  • Irwin D, Jung E, Wilson D (1994) Characterization and sequence of a Thermomonaspora fusca xylanase. Appl Environ Microbiol 60(3):763–770

    PubMed  CAS  Google Scholar 

  • Jordan DB, Wagschal K (2010) Properties and applications of microbial β-D-xylosidases featuring the catalytically efficient enzyme from Selenomonas ruminantium Appl. Microbiol Biotechnol 86:1647–1658

    CAS  Google Scholar 

  • Joseleau J-P, Imai T, Kuroda K, Katia Ruel K (2004) Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219(2):338–345

    PubMed  CAS  Google Scholar 

  • Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Ståhlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes. J Mol Biol 272:383–397

    PubMed  CAS  Google Scholar 

  • Kruus K, Niku-Paavola M-L, Viikari L (2001) Laccase—a useful enzyme for modification of biopolymers. In: Chiellini E, Gil H, Braunegg G, Buchert J, Gatenholm P, van der Zee M (Eds) Biorelated polymers: sustainable polymer science and technology.. Kluwer Academic/Plenum. New York , pp 255–261

    Google Scholar 

  • Kumar R, Wyman CE (2009a) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    PubMed  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009b) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314

    PubMed  CAS  Google Scholar 

  • Lappalainen A, Tenkanen M, Pere J (2004) Specific antibodies for immunochemical detection of wood-derived hemicelluloses. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology, ACS Symposium Series 864. American Chemical Society, Washington, DC, pp 140–156

    Google Scholar 

  • Leppänen AS, Niittymäki O, Parikka K, Tenkanen M, Eklund P, Sjöholm R, Willför S (2010) Metal mediated allylation of enzymatically oxidized methyl α-D-galactopyranoside. Carbohydr Res 345:2610–2615

    PubMed  Google Scholar 

  • Martens-Uzunova ES, Zandleven JS (2006) A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochem J 400:43–52

    PubMed  CAS  Google Scholar 

  • McKie VA, Vincken JP, Voragen AGJ, Broek LAM, van den Stimson E, Gilbert HJ (2001) A new family of rhamnogalacturonan lyases contains an enzyme that binds to cellulose. Biochem J 355:167–177

    PubMed  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277

    PubMed  CAS  Google Scholar 

  • Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    PubMed  CAS  Google Scholar 

  • Mutter M, Beldman G (1994) Rhamnogalacturonan alpha-L-rhamnopyranohydrolase. A novel enzyme specific for the terminal nonreducing rhamnosyl unit in rhamnogalacturonan regions of pectin. Plant Physiol 106(1):241–250

    PubMed  CAS  Google Scholar 

  • Mutter M, Beldman G, Pitson SM, schools HA, Voragen AGJ (1998) Rhamnogalacturonan alpha-D-galactopyranosyluronohydrolase - An enzyme that specifically removes the terminal nonreducing galacturonosyl residue in rhamnogalacturonan regions of pectin. Plant Physiol 117(1):153–16

    PubMed  CAS  Google Scholar 

  • Mutter M, Colquhoun IJ, Schols HA, Beldman G, Voragen AGJ (1996) Rhamnogalacturonase B from aspergillus aculeatus is a rhamnogalacturonan alpha-L-rhamnopyranosyl-(1->4)-alpha-D-galactopyranosyluronide lyase. Plant Physiol 110(1):73–77

    PubMed  CAS  Google Scholar 

  • Numan MT, Bhosle NB (2006) Alpha-L-arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260

    PubMed  CAS  Google Scholar 

  • Oksanen T, Pere J, Buchert J, viikari L (1997a) The effect of Trichoderma reesei cellulases and hemicellulases on the paper technical properties of never-dried bleached kraft pulp. Cellulose 4:329–339

    CAS  Google Scholar 

  • Oksanen T, Buchert J, Viikari L (1997b) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51(4):355–360

    CAS  Google Scholar 

  • Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78:39–48

    PubMed  CAS  Google Scholar 

  • Olson L, Stanley P (1990) Compositions and methods to vary color density Patent WO 90/02790

    Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    PubMed  Google Scholar 

  • Oomen R, Doeswijk-Voragen CHL, Bush MS, Vincken J-P, Borkhardt B, van den Broek LAM, Corsar J, Ulvskov P, Voragen AGJ, McCann M, Visser RGF (2002) In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development. Plant J 30(4):403–413

    PubMed  CAS  Google Scholar 

  • Panagiotopoulos IA, Bakker RR (2008) Comparative study of different lignocellulosic feedstocks enzymatic hydrolysis for fermentable substrates production. Proceedings of the 16th European Biomass Conference & Exhibition. Valencia, Spain, pp 1749–1752

    Google Scholar 

  • Panagiotopoulos IA, Bakker RR, Budde MA, de Vrije T, Claassen PAM, Koukios EG (2009) Fermentative hydrogen production from pretreated biomass: a comparative study. Bioresource Technol 100:6331–6338

    CAS  Google Scholar 

  • Parikka K, Tenkanen M (2009) Oxidation of methyl alpha-D-galactopyranoside by galactose oxidase: products formed and optimization of reaction conditions for production of aldehyde. Carbohydr Res 344:14–20

    PubMed  CAS  Google Scholar 

  • Parikka K, Leppanen A-S, Pitkanen L, Reunanen M, Willfor S, Tenkanen M (2010) Oxidation of polysaccharides by galactose oxidase. J Agric Food Chem 58:262–271

    PubMed  CAS  Google Scholar 

  • Patel I, Ludwig R, Haltrich D, Rosenau T, Potthast A (2011) Studies of the chemoenzymatic modification of cellulosic pulps by the laccase-TEMPO system. Holzforschung 65(4):475–481

    CAS  Google Scholar 

  • Pere J, Siika-aho M, Viikari L (2000) Biomechanical pulping with enzymes: response of coarse mechanical pulp to enzymatic modification and secondary refining. TAPPI J 83:85–185

    CAS  Google Scholar 

  • Pollet A, Delcour JA, Courtin CM (2010a) Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Crit Rev Biotechnol 30:176–191

    PubMed  CAS  Google Scholar 

  • Pollet A, Schoepe J, Dornez E, Strelkov SV, Delcour JA, Courtin CM (2010b) Functional analysis of glycoside hydrolase family 8 xylanases shows narrow but distinct substrate specificities and biotechnological potential. Appl Microbiol Biotechnol 87:2125–2135

    PubMed  CAS  Google Scholar 

  • Potthast A, Röhrling J, Rosenau T, Borgards A, Sixta H, Kosma P (2003) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labelling. 3. Monitoring oxidative processes. Biomacromolecules 4(3):743–749

    PubMed  CAS  Google Scholar 

  • Rouau X, El-Hayek ML, Moreau D (1994) Effect of an enzyme preparation containing pentosanes on the bread making quality of flours in relation to changes in pentosan properties. J Cereal Sci 19:259–272

    CAS  Google Scholar 

  • Ruel K, Joseleau J-P (1984) Use of enzyme-gold complex for ultrastructural localization of hemicelluloses in the plant cell wall. Histochemistry 81:573–580

    PubMed  CAS  Google Scholar 

  • Schols HA, Geraeds C, Searle-van Leeuwen MF, Kormelink FJM, Voragen AGJ (1990) Hairy (ramified) regions of pectins. 2. Rhamnogalacturonase—a novel enzyme that degrades the hairy regions of pectins. Carbohydrate Res 206(1):105–115

    CAS  Google Scholar 

  • Searle van leeuwen MJF, Broek AM, Schols HA, Beldman G, Voragen AGJ (1992) Rhamnogalacturonan acetylesterase—A novel enzyme from Aspergillus aculeatus, specific for the deacetylation of hairy (ramified) regions of pectins. Appl Microbiol Biotechnol 38(3):347–349

    CAS  Google Scholar 

  • Sengkhamparn N, Sagis LMC, de Vries R, Schols HA, Sajjaanantakul T, Voragen AGJ (2010) Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) Moench). Food Hydrocolloids 24(1); 35–41

    Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    PubMed  CAS  Google Scholar 

  • Siika-aho M, Tenkanen M, Buchert J, Puls J, Viikari L (1994) An α-glucuronidase from Trichoderma reesei RUT C-30. Enzyme Microb Technol 16:813–819

    CAS  Google Scholar 

  • Spanikova S, Biely P (2006) Glucuronoyl esterase—Novel carbohydrate esterase produced by Schizophyllum commune. FEBS Lett 560:4597–4601

    Google Scholar 

  • Sprössler BG (1997) Xylanases in baking. In: Angelino SAGF, Hamer RJ, van Hartingsveldt W, Heidekamp F, van der Lungt JP (eds) 1st European symposium of enzymes in grain processing. TNO Food and Nutrition, Zeist NL, pp 177–187

    Google Scholar 

  • Suurnäkki A, Heijnesson A, Buchert J, Tenkanen M, Viikari L, Westermark U (1996a) Location of xylanase and mannanase action in kraft fibres. J Pulp Paper Sci 22(3):J78–J83

    Google Scholar 

  • Suurnäkki A, Heijnesson A, Buchert J, Tenkanen M, Viikari L, Westermark U (1996b) Chemical characterization of the surface layers of unbleached pine and birch kraft pulp fibres. J Pulp Paper Sci 22(2):J43–J47

    Google Scholar 

  • Suurnäkki A, Tenkanen M, Buchert J, Viikari L (1997) Hemicellulases in bleaching of chemical pulps. Adv Biochem Eng Biotechnol 57:261–287

    PubMed  Google Scholar 

  • Tailford LE, Ducros VM-A, Flint JE, Roberts SM, Morland C, Zechel DL, Smith N, Bjoernvad ME, Borchert TV, Wilson KS, Davies GJ, Gilbert HJ (2009) Understanding how diverse β-mannanases recognize heterogeneous substrates. Biochemistry 48:7009–7018

    PubMed  CAS  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Tibtech 15:160–167

    Google Scholar 

  • Teeri TT, Koivula A, Linder M, Wohlfahrt G, Divne C, Jones TA (1998) Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochem Soc Trans 26:173–178

    PubMed  CAS  Google Scholar 

  • Teleman A, Harjunpää V, Tenkanen M, Buchert J, Hausalo T, Drakenberg T, Vuorinen T (1995) Characterization of 4-deoxy-ß-L-threo-hex-4-enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 1H and 13C NMR spectroscopy. Carbohydr Res 272:55–71

    PubMed  CAS  Google Scholar 

  • Tenkanen M (1998) Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem 27:19–24

    PubMed  CAS  Google Scholar 

  • Tenkanen M, Siika-aho M (2000) An alpha-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 78:149–161

    PubMed  CAS  Google Scholar 

  • Tenkanen M, Eyzaguirre J, Isoniemi R, Faulds CB, Biely P (2003) Comparison of catalytic properties of acetyl xylan esterases from three carbohydrate esterase families. In: Mansfield S, Saddler JN (eds) Application of enzymes to lignocellulosics, ACS Symposium Series vol. 855, pp. 211–229

    Google Scholar 

  • Thornton J, Tenkanen M, Ekman R, Holmbom B, Viikari L (1994) Effects of alkaline treatment on dissolved carbohydrates in suspensions of Norway spruce thermomechanical pulp. J Wood Chem Technol 14(2):176–194

    Google Scholar 

  • Tijskens LMM, Rodis PS, Hertog MLAT, Kalantzi U, van Dijk C (1998) Kinetics of polygalacturonase activity and firmness of peaches during storage. J Food Engineer 35(1):111–126

    Google Scholar 

  • Tijskens LMM, Rodis PS, Hertog MLAT, Proxenia N, van Dijk C (1999) Activity of pectin methyl esterase during blanching of peaches. J Food Engineer 39(2):167–177

    Google Scholar 

  • Tijskens LMM, Waldron K, Ng IA, van Dijk C (1997) The kinetics of pectin methyl esterase in potatoes and carrots during blanching. J Food Engineer 34(4):371–385

    Google Scholar 

  • Udatha DBRKG, Kouskoumvekaki I, Olsson L, Panagiotou G (2011) The interplay of descriptor-based computational analysis with pharmacophore modeling builds the basis for a novel classification scheme for feruloyl esterases. Biotechnol Adv 29:94–110

    PubMed  CAS  Google Scholar 

  • van den Broek LAM, den Aantrekker ED, Voragen AGJ, Beldman G, Vincken J-P (1997) Pectin lyase is a key enzyme in the maceration of potato tuber. J Sci Food Agric 75(2):167–172

    Google Scholar 

  • Van Dijk C, Boeriu C, Peter F, Stolle-Smits T, Tijskens LMM (2006) The firmness of stored tomatoes (cv. Tradiro). 1. Kinetic and near infrared models to describe firmness and moisture loss. J Food Engineer 77(3):575–584

    Google Scholar 

  • Van Hellemond E, Leferink NGH, Heuts DPHM, Fraaije MW, van Berkel WJH (2006) Occurrence and biocatalytic potential of carbohydrate oxidases. Adv Appl Microbiol 60(60):17–54

    PubMed  Google Scholar 

  • Vian B, Brillouet JM, Satiat-Jeunemaitre B (1983) Ultrastructural visualization of xylans in cell walls of hardwood by means of xylanase-gold complex. Biol Cell 49:179–182

    Google Scholar 

  • Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145

    PubMed  CAS  Google Scholar 

  • Viikari L, Grönqvist S, Kruus K, Pere J, Siika-aho M, Suurnäkki A (2010) Industrial biotechnology in the paper and pulp sector. In: Soetaert W, Vandamme E (eds) Industrial biotechnology. Wiley-VCH Published Online: 29 APR 2010

    Google Scholar 

  • Viikari L, Vehmaanperä J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenerg. Available on line. http://dx.doi.org/10.1016/j.biombioe.2012.05.008

  • Vrsanska M, Kolenova K, Puchart V, Biely P (2007) Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi. FEBS J 274:1666–1677

    PubMed  CAS  Google Scholar 

  • Westphal Y, Schols HA, Voragen AGJ, Gruppen H (2010) MALDI-TOF MS and CE-LIF fingerprinting of plant cell wall polysaccharide digests as a screening tool for Arabidopsis cell wall mutants. J Agric Food Chem 58(8):4644–4652

    PubMed  CAS  Google Scholar 

  • Willfor S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans—a potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72(2):197–210

    CAS  Google Scholar 

  • Wong D (2008) Enzymatic deconstruction of backbone structures of the ramified regions in pectins. Protein J 27(1):30–42

    PubMed  CAS  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    CAS  Google Scholar 

  • Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371

    PubMed  CAS  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Suurnäkki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Koivula, A. et al. (2012). Polysaccharide-Acting Enzymes and Their Applications. In: Navard, P. (eds) The European Polysaccharide Network of Excellence (EPNOE). Springer, Vienna. https://doi.org/10.1007/978-3-7091-0421-7_12

Download citation

Publish with us

Policies and ethics