Skip to main content

Chitin and Chitosan as Functional Biopolymers for Industrial Applications

  • Chapter
  • First Online:

Abstract

Chitin research and development seems to be under intensive progress during the last years. Attractive properties of chitin and its derivative—chitosan, for example, biological behavior, and development of their applications caused increased interest of scientists and companies. More and more practical development has been applied on the market, mainly in medicine and food. Firstly, this chapter reviews processing, isolation, and purification of chitin/chitosan. Then it discusses applicable forms of chitin and chitosan and chitosan derivatives. The main part of this chapter contains applications of chitin and chitosan in food, medicine, agriculture, bionanotechnology, and cosmetics. Future trends in chitin and its derivatives in medicine are presented and the end of this book includes research conducted within the EPNOE.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acosta N et al (1993) Extraction and characterization of chitin from crustaceans. Biomass Bioenergy 5(2):145–153

    Article  CAS  Google Scholar 

  • Agboh OB (1986) The production of fibres from chitin, PhD thesis, University of Leeds

    Google Scholar 

  • Akbuga J, Bergisadi N (1996) J Microencapsul 13:161–168

    Article  PubMed  CAS  Google Scholar 

  • Alimuniar A, Zainuddin R (1992) In: Brine CJ, Sandford PA, Zikakis JP (eds) Advances in chitin and chitosan, vol 1. Elsevier Applied Science, London, p 627

    Chapter  Google Scholar 

  • Allan C, Hadwiger LA (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp Mycol 3:285–287

    Article  CAS  Google Scholar 

  • Allan GG, McConnell WJ (1975) C. Ong, symposium papers, third technical symposium, Nonwoven Products Technology, International Nonwovens and Disposable Association, New York, pp 109–121

    Google Scholar 

  • Alsarra IA (2009) Chitosan topical gel formulation in the management of burn wounds. Int J Biol Macromol 45:16–21

    Article  PubMed  CAS  Google Scholar 

  • Amid PK (1997) Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1:15–21

    Article  Google Scholar 

  • Andrady AL, Xu P (1997) J Polym Sci Part B Polym Phys 35:517–521

    Article  CAS  Google Scholar 

  • Araki Y, Ito E (1975) A pathway of chitosan formation in Mucor rouxii. Eur J Biochem 55:71–78

    Article  PubMed  CAS  Google Scholar 

  • Baba Y, Kawano Y, Hirakawa H (1996) Bull Chem Soc Jpn 69:1255–1260

    Article  CAS  Google Scholar 

  • Badawy MEI, Rabea EI, Rogge TM, Stevens CV, Steurbaut W, Höfte M, Smagghe G (2005) Fungicidal and insecticidal activity of O-acyl chitosan derivatives. Polym Bull 54:279–289

    Article  CAS  Google Scholar 

  • Batista I, Roberts GAF (1990) Macromol Chem 191:429–434

    Article  CAS  Google Scholar 

  • Bautista J, Jover M, Gutierrez JF, Corpas R, Cremades O, Fontiveros E, Iglesias F, Vega J (2001) Process Biochem 37:229–234

    Article  CAS  Google Scholar 

  • Begin A, Van Calsteren MR (1999) Antimicrobial films produced from chitosan. Int J Biol Macromol 26:63–67

    Article  PubMed  CAS  Google Scholar 

  • Bell AA, Hubbard JC, Liu L, Davis RM, Subbarao KV (1998) Effects of chitin and chitosan on the incidence and severity of Fusarium yellows in celery. Plant Dis 82:322–328

    Article  CAS  Google Scholar 

  • Benhamou N (2004) Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: a comparison with the effect of chitosan. Phytopathology 94:693–705

    Article  PubMed  Google Scholar 

  • Benhamou N, Lafontaine PJ, Nicole M (1994) Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84(12):1432–1444

    Article  CAS  Google Scholar 

  • Benjakul S, Wisitwuttikul P (1994) ASEAN Food J 9:136

    CAS  Google Scholar 

  • Bittelli M, Flury M, Campbell GS, Nichols EJ (2001) Reduction of transpiration through foliar application of chitosan. Agric Forest Meteorol 107:167–175

    Article  Google Scholar 

  • Bodek KH (1997) In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives, vol 3. Polish Chitin Society, Lodz, p 109

    Google Scholar 

  • Borkowski J, Dyki B, Felczyńska A, Kowalczyk W (2007) Effect of BIOCHIKOL 020 PC (chitosan) on the plant growth, fruit yield and healthiness of tomato plant roots and stems. In: Progress on chemistry and application of chitin and its derivatives. Monograph XII, pp 217–223

    Google Scholar 

  • Borkowski J, Dyki B, Niekraszewicz A, Struszczyk H (2004) Effect of preparations Biochikol 020 PC, Tytanit, Biosept 33 SL and others on the healthiness of tomato plants and their fruiting in glasshouse. In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives. Monograph X, pp 167–173

    Google Scholar 

  • Borkowski J, Kotlińska T, Niekraszewicz A, Struszczyk H (2003) Comparison on the effect of chitosan and tytanit on the growth and healthiness of top onion (Allium proliferum) and onion (Allium cepa) in field conditions. In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives. Monograph IX, pp 107–112

    Google Scholar 

  • Borkowski J, Kowalczyk W, Struszczyk H (1998) Effect of spraying tomato plants with chitosan and other treatments on the growth of plants, their healthiness and fruit yield. In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives. Monograph IV, Lodz, pp 149–155

    Google Scholar 

  • Borkowski J, Nowosielski O, Kotlińska T, Niekraszewicz A, Struszczyk H (2001) Influence of chitosan and tytanit on the growth and healthiness of the lettuce, top onion and the glasshouse tomato. In: Struszczyk H (ed) Progress on the chemistry and application of chitin and its derivatives. Monograph VII, pp 159–168

    Google Scholar 

  • Borkowski J, Struszczyk H, Niekraszewicz A (2002) Effect of chitosan and other preparations on the infection of powdery mildew on tomato, plant growth and red spider population. In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives. Monograph VIII, pp 141–148

    Google Scholar 

  • Bough WA, Salter WL, Wu ACM, Perkins BE (1978) Biotech Bioeng 20:1931–1943

    Article  CAS  Google Scholar 

  • Briston JH (1974) Plastic films. The Plastic Institute, ILIFFE Books, London, pp 63–82

    Google Scholar 

  • Broussignac P (1968) Chim Ind Genie Chim 99:1241

    CAS  Google Scholar 

  • Burkinshaw SM, Karim MF (1991) J Soc Leath Technol Chem 75:203–208

    CAS  Google Scholar 

  • Bustos RO, Healy MG (1994) Second international symposium on environmental biotechnology, biotechnology, pp 15–25

    Google Scholar 

  • Cai J et al (2006) Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant. Carbohydr Polym 64(2):151–157

    Article  CAS  Google Scholar 

  • Carroad PA, Tom RA (1978) Bioconversion of shellfish chitin wastes: process conception and selection of microorganisms. J Food Sci 43:1158–1161

    Article  CAS  Google Scholar 

  • Castelli A, Bergamasco L, Beltrame PL, Focher B (1997) In: Domard A, Jeuniaux C, Muzzarelli R, Roberts G (eds) Advances in chitin science, vol 1. Jacques André Publ, Lyon, pp 198–203

    Google Scholar 

  • Chang KLB, Tsai G, Lee J, Fu W-R (1997) Carbohydr Res 303:327–332

    Article  CAS  Google Scholar 

  • Charoenvuttitham P, Shi J, Mittal GS (2006) Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep Sci Technol 41(6):1135–1153

    Article  CAS  Google Scholar 

  • Cheah LH, Page BBC (1997) Trichoderma spp. for potential biocontrol of clubroot of vegetable brassicas. Crop Food Res., pp 150–153, Proc. 50th New Zealand Plant Protection Conf. 1997

    Google Scholar 

  • Chen C, Liau W, Tsai G (1998) Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation. J Food Prot 61:1124–1128

    PubMed  CAS  Google Scholar 

  • Chen Y, Li C (1996) Studies on the application of chitosan to clarification of grapefruit juice. Food Sci 23:617–628

    CAS  Google Scholar 

  • Cheng JC, Pisano AP (2008) Photolithographic process for integration of the biopolymer chitosan into micro/nanostructures. J Microelectromech Syst 17:402–409, Park I, Cheng J, Pisano AP, Lee E-S

    Article  CAS  Google Scholar 

  • Chilarski A, Szosland L, Krucinska I, Błasinska A, Cisło R (2004) The application of chitin derivatives as biological dressing in treatment of thermal and mechanical skin injuries, The Annual of Pediatric Traumatic Surgery, The Division of Pediatric Traumatic Surgery 8 (XXXII), pp 58–61

    Google Scholar 

  • Chilarski A, Szosland L, Krucińska I, Błasińska A, Cisło R (2004) Non-wovens made from dibutyrylchitin as novel dressing materials accelerating wound healing. In: Proceedings of 6th international conference of the European Chitin Society, EUCHIS’04, Poznan-Poland

    Google Scholar 

  • Chilarski A, Szosland L, Krucińska I, Kiekens P, Błasińska A, Schoukens G, Cisło R, Szumilewicz J (2007) Novel dressing materials accelerating wound healing made from dibutyrylchitin. Fibres Text East Eur 15(4 (63)):77–81

    CAS  Google Scholar 

  • Chirkov SN (2002) The antiviral activity of chitosan (review). Appl Biochem Microbiol 38:1–8

    Article  CAS  Google Scholar 

  • Christodoulidou A, Bouriotis V, Thireos GJ (1996) Biol Chem 271:31420–31425

    Article  CAS  Google Scholar 

  • Christodoulidou A, Tsigos I, Martinou A, Tsandaskalaki M, Kafetzopoulos D, Bouriotis V (1998) Adv Chitin Sci 2:188–193

    Google Scholar 

  • Ciechańska D, Struszczyk MH, Kucharska M et al (2010) Multilayer surgical mesh and method of multilayer surgical mesh manufacture, PL Patent Appl. No. P 390253

    Google Scholar 

  • Ciechańska D, Wietecha J, Kaźmierczak D, Kazimierczak J (2010b) Fibres Text East Eur 18(5 (82)):98–104

    Google Scholar 

  • Cosio IG, Fisher RA, Carroad PA (1982) J Food Sci 42:901

    Article  Google Scholar 

  • Crompton KE, Goud JD, Bellamkonda RV, Gengenbach TR, Finkelstein DI, Horne MK et al (2007) Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials 28:441–449

    Article  PubMed  CAS  Google Scholar 

  • Daayf F, El Bellaj M, El Hassni M, J’aiti F, El Hadrami I (2003) Elicitation of soluble phenolics in date palm (Phoenix dactylifera L.) callus by Fusarium oxysporum f. sp. albedinis culture medium. Environ Exp Bot 49:41–47

    Article  CAS  Google Scholar 

  • Deans JR, Dixon BG (1992) Bioabsorbents for wastewater treatment. In: Brine CJ, Sandford PA, Zikakis JP (eds) Advances in chitin and chitosan. Elsevier Applied Science, Oxford, pp 648–656

    Chapter  Google Scholar 

  • Desai K, Kit K, Li J, Davidson PM, Zivanovic S, Meyer H (2009) Polymer 50:3661–3669

    Article  CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    Article  CAS  Google Scholar 

  • Dwivedi J, Om P (1995) Agrawal. Physiol Entomol 20:318–322

    Article  Google Scholar 

  • East GC (1993) J Appl Polym Sci 50:1773

    Article  CAS  Google Scholar 

  • El Ghaouth A, Arul J, Asselin A, Benhamou N (1992) Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations an Rhizopus stolonifer. Mycol Res 96:769–779

    Article  CAS  Google Scholar 

  • El Ghaouth A, Smilanick JL, Wilson CL (2000) Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Biol Technol 19:103–110

    Article  CAS  Google Scholar 

  • El Hassni M, El Hadrami A, Daayf F, Chérif M, Ait Barka E, El Hadrami I (2004) Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defence reactions in date palm roots. Phytopathol Mediterr 43:195–204

    CAS  Google Scholar 

  • EN 13726-1:2002 Test methods for primary wound dressings – Part 1: Aspects of absorbency

    Google Scholar 

  • EN 13726-2:2002 Test methods for primary wound dressings – Part 2: Moisture vapour transmission rate of permeable film dressings

    Google Scholar 

  • EN 13726-3:2002 Non-active medical devices – Test methods for primary wound dressings – Part 3: Waterproofness

    Google Scholar 

  • EN 13726-4:2002 Non-active medical devices – Test methods for primary wound dressings – Part 4: Conformability

    Google Scholar 

  • EN-ISO 10993-1:2008 Biological evaluation of medical devices – Part 1: Evaluation and testing

    Google Scholar 

  • EN-ISO 22442-1:2007 Medical devices utilizing animal tissues and their derivatives – Part 1: Application of risk management

    Google Scholar 

  • EN-ISO 22442-2:2007 Medical devices utilizing animal tissues and their derivatives – Part 2: Controls on sourcing, collection and handling

    Google Scholar 

  • EN-ISO 22442-3:2007 Medical devices utilizing animal tissues and their derivatives – Part 3: Validation of the elimination and/or inactivation of viruses and transmissible spongiform encephalopathy (TSE) agents

    Google Scholar 

  • Faoro F, Maffi D, Cantu D, Iriti M (2008) Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. BioControl 53:387–401

    Article  CAS  Google Scholar 

  • Faoro F, Sant S, Iriti M, Appiano A (2001) Chitosan-elicited resistance to plant viruses: a histochemical and cytochemical study. In: Muzzarelli RAA (ed) Chitin enzymology. Atec, Grottammare, Italy, pp 57–62

    Google Scholar 

  • Fin. patent No. 93–4616 931019

    Google Scholar 

  • Freeman A, Dror Y (1994) Biotechnol Bioeng 44:1083–1108

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Kumagai H, Noda M (1980) Carbohydr Res 83:389–393

    Article  CAS  Google Scholar 

  • Gades M, Stern JS (2005) J Am Diet Assoc 105:72–77

    Article  PubMed  CAS  Google Scholar 

  • Gagne N, Simpson BK (1993) Use of proteolytic enzymes to facilitate the recovery of chitin from shrimp wastes. Food Biotechnol 7(3):253–263

    Article  CAS  Google Scholar 

  • Gajdziecki B, Mozyszek Z, Struszczyk H, Oczkowski M, Rybicki E (1995) In: Progress on Chemistry and Application of Chitin and its Derivatives, vol 1, pp 106–117

    Google Scholar 

  • Galas E, Kubik C, Struszczyk MH (1996) In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives, vol 2. Polish Chitin Society, Lodz, pp 55–73

    Google Scholar 

  • Gamzazade A, Sklyar A, Nasibov S, Sushkov I, Shashkov A, Knirel Y (1997) Carbohydr Polym 34:113

    Article  CAS  Google Scholar 

  • Gauthier C, Clerisse F, Dommes J, Jaspar-Versali M-F, Protein Expression and Purification 59 (2008), pp 127–137

    Google Scholar 

  • Giles CH, Hassan ASA, Laidlaw M, Subramanian RVR (1958) J Soc Dyers Colou 74:645

    Google Scholar 

  • Gopalan NK, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4:657–666

    Article  CAS  Google Scholar 

  • Griethuysen-Diblber E, Flaschel E, Renken A (1988) Process Biochem 4:55

    Google Scholar 

  • Guan YJ, Hu J, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci B 10:427–433

    Article  PubMed  CAS  Google Scholar 

  • Guminska M, Ignacak J, Kedryna T, Struszczyk H (1997) In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives, vol 3. Polish Chitin Society, Lodz, pp 124–132

    Google Scholar 

  • Hadwiger LA, Fristensky B, Riggleman RC (1984) In: Zikakis JP (ed) Chitin, chitosan and related enzymes. Academic, Orlando, FL, pp 291–302

    Google Scholar 

  • Hall GM, Silva SD (1994) Biotechnology, pp 633–638

    Google Scholar 

  • Harish Prashanth KV, Tharanathan RN (2007) Trends Food Sci Technol 18:117–131

    Article  CAS  Google Scholar 

  • Hayashi T, Ikada Y, Itoyama K, Tanibe H (1992) Proceedings from 4th world biomaterial congress, Berlin, p 369

    Google Scholar 

  • Hein S, Ng C.H., Chandrkrachang S, Stevens WF (2001) “A Systematic Approach to Quality Assessment System of Chitosan” in Chitin and Chitosan: Chitin and Chitosan in Life Science, Yamaguchi, pp 332–335 ed. by Urgami T., Kurita K., Fukamizo T., Kodansha Scientific, Tokyo

    Google Scholar 

  • Hirano S (1998) In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. Atec Edizioni, Italy, pp 71–83

    Google Scholar 

  • Hisamatsu M (1998) In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. Atec Edizioni, Italy, p 411

    Google Scholar 

  • Hoffmann K et al (2010) Genetic improvement of bacillus licheniformis strains for efficient deproteinization of shrimp shells and production of high-molecular-mass chitin and chitosan. Appl Environ Microbiol 76(24):8211–8221

    Article  PubMed  CAS  Google Scholar 

  • Holme KR, Perlin AS (1997) Carbohydr Res 302:7

    Article  PubMed  CAS  Google Scholar 

  • Hsien T-Y, Rorrer GL (1995) Sep Sci Technol 30:2455–2475

    Article  CAS  Google Scholar 

  • Hua K-J, Hua J-L, Hob K-P, Yeung K-W (2004) Carbohydr Polym 58:45–52

    Article  CAS  Google Scholar 

  • Hwang D, Damodaran S (1995) Selective precipitation and removal of lipids from cheese whey using chitosan. J Agric Food Chem 43:33–37

    Article  CAS  Google Scholar 

  • Imeri AG, Knorr D (1988) Effect of Chitosan on yield and compositional data of carrot and apple juice. J Food Sci 53:1707–1709

    Article  CAS  Google Scholar 

  • InfoFish, Shrimp Wastes Utilisation (1997) Technical Handbook

    Google Scholar 

  • Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Garganoand M, Faoro F (2009) Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ Exp Bot 66:493–500

    Article  CAS  Google Scholar 

  • ISO 10993–18:2005 Biological evaluation of medical devices – Part 18: Chemical characterization of material

    Google Scholar 

  • ISO 13485:2003 Medical devices – Quality management systems – Requirements for regulatory purposes

    Google Scholar 

  • ISO 7198:1998 – Cardiovascular implants – Tubular vascular prostheses

    Google Scholar 

  • ISO 9001:2008 Quality Management Systems Requirements

    Google Scholar 

  • ISO/DIS 10993-19 Biological evaluation of medical devices – Part 19: Physico-chemical, mechanical and morphological characterization

    Google Scholar 

  • Issa MM, Koping-Hoggard M, Artursson P (2005) Drug Discov Today Technol 2(1):1–6

    Article  CAS  Google Scholar 

  • Itoh S, Yamaguchi I et al (2003a) Brain Res 993: 111–112

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Yamaguchi I, Shinomiya K, Tanaka J (2003b) Sci Technol Adv Mater 4:261–268

    Article  CAS  Google Scholar 

  • Itoyama K (1996) Gekkan Fudo Kemikaru 12:19–23

    CAS  Google Scholar 

  • Itozawa T, Kise H (1995) J Ferment Bioeng 80:30–34

    Article  CAS  Google Scholar 

  • Ivshina TN et al (2009) Isolation of the chitin-glucan complex from the fruiting bodies of mycothallus. Appl Biochem Microbiol 45(3):313–318

    Article  CAS  Google Scholar 

  • Jameela SR, Latha PG, Subramoniam A, Jayakrishnan A (1996) J Pharm Pharmacol 48:685–688

    Article  PubMed  CAS  Google Scholar 

  • Japan Patent No 63169975 (88169975)

    Google Scholar 

  • Japan Patent No. 60159123

    Google Scholar 

  • Japan Patent No. 62297365 (877297365)

    Google Scholar 

  • Japan Patent No. 63–161001

    Google Scholar 

  • Japan Patent No. 63189859

    Google Scholar 

  • Japan Patent No. 92-257696 (920928)

    Google Scholar 

  • Jaworska MM, Konieczna-Moras E (2009) Inhibition of chitin deacetylase by acetic acid preliminary investigation. In: Jaworska MM (ed) Progress on chemistry and application of chitin and its derivatives, vol XIV. Polish Chitin Society, Lodz, pp 83–88

    Google Scholar 

  • Je JY, Park PJ, Kim SK (2005) Carbohydr Polym 60:553

    Article  CAS  Google Scholar 

  • Jeong J-H (2007) Low temperature, low pressure nanoimprinting of chitosan as a biomaterial for bionanotechnology applications. Appl Phys Lett 90:093902–093903

    Article  CAS  Google Scholar 

  • Jeuniaux A (1986) Chitosan as a tool for the purification of waters. In: Muzzarelli RAA, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum Press, New York, NY, pp 551–570

    Chapter  Google Scholar 

  • Jia Z, Shen D, Xu W (2001) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 333:1–6

    Article  PubMed  CAS  Google Scholar 

  • Jung WJ et al (2007) Production of chitin from red crab shell waste by successive fermentation with Lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3. Carbohydr Polym 68(4):746–750

    Article  CAS  Google Scholar 

  • Kardas I, Marcol W, Niekraszewicz A, Kucharska M, Ciechańska D, Wawro D, Lewin-Kowalik J, Właszczuk A (2010) Utilization of biodegradable polymers for peripheral nerve reconstruction. In: Jaworska M (ed) Progress on chemistry and application of chitin and derivatives, vol 15. Polish Chitin Society, Lodz, pp 159–167

    Google Scholar 

  • Kawamura Y, Yoshida H, Asai S, Kurahashi I, Tanibe H (1997) Sep Sci Technol 32:1959–1974

    Article  CAS  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2002) Effect of foliar application of chitin and chitosan oligosaccharides on photosynthesis of maize and soybean. Photosynth Res 40:621–624

    Article  CAS  Google Scholar 

  • Kim JH, Shin JH, Lee HJ, Chung IS, Lee HJ (1997) Effect of chitosan on indirubin production from suspension culture of Polygonum tinctorium. J Ferm Bioeng 83:206–208

    Article  CAS  Google Scholar 

  • Kim SS, Lee YM, Cho CS (1995) Polymer 36:4497–4501

    Article  CAS  Google Scholar 

  • King GA, Daugulis AJ, Faulkner P, Bayly D, Goosen MFA (1989) Biotech Bioeng 34:1085

    Article  CAS  Google Scholar 

  • Kittur FS, Kumar KR, Tharanathan RN (1998) Zeitschrift Fur Lebensmittel Untersuchung Und Forschung A. Food Res Technol 206:44–47

    CAS  Google Scholar 

  • Kochanska B (1997) In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives, vol 3. Polish Chitin Society, Lodz, pp 103–108

    Google Scholar 

  • Koev ST, Powers MA, Park JJ, Yi H, Wu L, Bentley WE, Payne GF, Rubloff GW, Ghodssi R (2006) Chitosan as a functional interface between biology and microsystems. In: Bio Micro and Nanosystems Conference, BMN ’06, 15–18 Jan 2006, pp 82–82

    Google Scholar 

  • Kowalski B, Jimenez Terry F, Herrera L, Agramonte Peñalver D (2006) Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res 49:167–176

    Article  CAS  Google Scholar 

  • Krajewska B (2004) Enzym Microb Technol 35:126–139

    Article  CAS  Google Scholar 

  • Krucińska I, Komisarczyk A, Paluch D, Szumilewicz J (2006) Biological estimation of dibutyrylchitin nonwovens manufactured by the spraying of polymer solution technique. In: Progress in the chemistry and application of chitin and its derivatives, Polish Chitin Society, Monograph XI, pp 129–135

    Google Scholar 

  • Kucharska M, Niekraszewicz A, Lebioda J, Malczewska-Brzoza K, Wesołowska E (2007) In: Jaworska M (ed) Progress on chemistry and application of chitin and its derivatives. Polish Chitin Society, Lodz, pp 131–138

    Google Scholar 

  • Kucharska M, Niekraszewicz A, Struszczyk H, Bursig H (1997) In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives, vol 3. Polish Chitin Society, Lodz, pp 141–151

    Google Scholar 

  • Kucharska M, Struszczyk MH et al. (2006) Haemostatic multilayer wound dressing and the method of haemostatic multilayer wound dressing manufacture, PL Patent Appl. No. P 390253

    Google Scholar 

  • Kucharska M, Struszczyk MH, Cichecka M, Brzoza K (2011) Preliminary studies on the usable properties of innovative wound dressings. In: Progress on chemistry and application of chitin and its derivatives, vol 16, pp 131–137

    Google Scholar 

  • Kucharska M, Struszczyk MH, Cichecka M, Brzoza K (2011) Preliminary Studies on the Usable Properties of Innovative Wound Dressings, Progress on Chemistry and Application of Chitin and Its Derivatives, Monograph of Polishchitin Society, vol 16, pp 131–137

    Google Scholar 

  • Kulikov SN, Chirkov SN, Il’ina AV, Lopatin SA, Varlamov VP (2006) Effect of the molecular weight of chitosan on its antiviral activity in plants. Prik Biokhim Mikrobiol 42(2):224–228

    CAS  Google Scholar 

  • Kumar MNVR (2000) React Funct Polym 46:1–27

    Article  CAS  Google Scholar 

  • Kurauchi Y, Ohga K (1998) In: Muzzarelli RAA, Peter MG (eds) Chitin Handbook. Atec Edizioni, Italy, p 431

    Google Scholar 

  • Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203–226

    Article  PubMed  CAS  Google Scholar 

  • Kurita K, Akao H, Kaji Y, Kojima T, Hirakawa M, Kato M, Ishii S, Mori T, Nishijama Y (1997) In: Muzzarelli RAA (ed) Chitin enzymology, vol 2. Atec Edizioni, Italy, pp 483–490

    Google Scholar 

  • Kurita K, Koyama Y, Taniguchi A (1986) J Appl Polym Sci 21:1169

    Article  Google Scholar 

  • Kurita K, Sannan T, Iwakura Y (1977) Macromol Chem 178:3197–3202

    Article  CAS  Google Scholar 

  • Laflamme P, Benhamou N, Bussiéres G, Dessureault M (1999) Differential effect of chitosan on root rot fungal pathogens in forest nurseries. Can J Bot 77:1460–1468

    Article  Google Scholar 

  • Lafontaine JP, Benhamou N (1996) Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol Sci Technol 6:111–124

    Article  Google Scholar 

  • Lee KY, Kim JH, Kwon LC, Jeong SY (2000) Colloid Polym Sci 278:1216–1219

    Article  CAS  Google Scholar 

  • Lee YM, Nam SY, Woo DJ (1997) J Membr Sci 133:103–110

    Article  CAS  Google Scholar 

  • Li L, Hsieh Y-L (2006) Carbohydr Res 341:374–381

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Dunn E, Grandmaison EW, Goosen MFA (1992) J Bioact Comp Polym 7:370–397

    Article  CAS  Google Scholar 

  • Liu WG, Yao H (2002) J Control Release 83:1–11

    Article  Google Scholar 

  • Lu GY, Kong LJ, Sheng BY, Wang G, Gong YD, Zhang XF (2007) Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. Eur Polym J 43:3807–3818

    Article  CAS  Google Scholar 

  • Lusena CV, Rose RC (1953) J Fish Res Board Can 10:521

    Article  CAS  Google Scholar 

  • Madhumathi K, Sudheesh Kumar PT, Abilash S, Sreeja V, Tamura H, Manzoor K et al (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813

    Article  PubMed  CAS  Google Scholar 

  • Mahmoud NS, Ghaly AE, Arab F (2007) Unconventional approach for demineralization of deproteinized crustacean shells for chitin production. Am J Biochem Biotechnol 3(1):1–9

    Article  CAS  Google Scholar 

  • Di Mario F, Rapana P, Tomati U, Galli E (2008) Int J Biol Macromol 43:8–12

    Article  PubMed  CAS  Google Scholar 

  • Martinou A, Tsigos I, Bouriotis V (1998) In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. Atec Edizioni, Italy, p 501

    Google Scholar 

  • Ishihara M et al (2006) Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J Artif Organs 9:8–16

    Article  PubMed  CAS  Google Scholar 

  • Methacanona P, Prasitsilpa M, Pothsreea T, Pattaraarchachaib J (2003) Carbohydr Polym 52: 119–123

    Article  Google Scholar 

  • Micera G, Deiana S, Dessi A, Decock P, Dubois B, Kozlowski H (1986) Copper and vanadium complexes of chitosan. In: Muzzarelli RAA, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum, New York, NY, pp 565–567

    Google Scholar 

  • Mima S, Miiya M, Iwamoto R, Yoshikawa S (1983) Polym Sci 28:1909–1917

    CAS  Google Scholar 

  • Moorjani MN, Khasim DI, Rajalakshmi S, Puttarajappa P, Amla BL (1978) In: Muzzarelli RAA, Pariser ER (eds) Proceedings of 1st international conference on chitin and chitosan, MIT Sea Grant Program, p 210

    Google Scholar 

  • Morley KL, Chauve G, Kazlauskas R, Dupont C, Shareck F, Marchessault RH (2006) Carbohydr Polym 63:310–315

    Article  CAS  Google Scholar 

  • Mourya VK, Inamdar Nazma N (2008) React Funct Polym 68: 1013–1051

    Google Scholar 

  • Muffler K, Ulber R (2005) “Downstream processing in marine biotechnology” in: Y. Le-Gal, R. Ulber (Eds.); Marine Biotechnology II; Advances in Biochemical Engineering/Biotechnology; Springer Verlag, Berlin, 63–103

    Google Scholar 

  • Murakami K et al (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31:83–90

    Article  PubMed  CAS  Google Scholar 

  • Murphy JG, Rafferty SM, Cassells AC (2000) Stimulation of wild strawberry (Fragaria vesca) arbuscular mycorrhizas by addition of shellfish waste to the growth substrate: interaction between mycorrhization, substrate amendment and susceptibility to red core (Phytophthora fragariae). Appl Soil Ecol 15: 153–158

    Google Scholar 

  • Muzzarelli RAA (1977) Chitin. Pergamon of Canada Ltd., Toronto

    Google Scholar 

  • Muzzarelli RAA (1982) Proceedings of the 2nd international conference on chitin and chitosan. The Japanese Society of Chitin and Chitosan, Sapporo, Japan, p 25

    Google Scholar 

  • Muzzarelli RAA (1989) In: Skjak-Braek G, Anthonsen T, Standford P (eds) Chitin and chitosan. Elsevier Applied Science, New York, pp 87–99

    Google Scholar 

  • Muzzarelli RAA (1998) In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. Atec Edizioni, Italy, p 47

    Google Scholar 

  • Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, Muzzarelli C, Tarsi R, Miliani M, Gabbanelli F, Cartolari M (2001) Fungistatic activity of modified chitosans against Saprolegnia parasitica. Biomacromology 2:165–169

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, Muzzarelli C, Terbojevich M (1997) Carbohydr Europe 19:10–18

    Google Scholar 

  • Muzzarelli RAA, Tafani F, Scarpini G (1980) Biotech Bioeng 22:885–896

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE (1990) Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother 34: 2019–2023

    Google Scholar 

  • Muzzarelli RAA, Weckx M, Fillipini O (1989) Removal of trace metal ions from industrial waters, unclear effluents and drinking water, with the aid of cross-linked N-carboxymethyl chitosan. Carbohydr Polym 11:293–296

    Article  CAS  Google Scholar 

  • Nagasawa K, Tohira Y, Inoue Y, Tanoura N (1971) Carbohydr Res 18: 95

    Google Scholar 

  • Naggi AM, Torri G, Compagnoni T, Casu B (1986) Chitin in nature and technology. Plenum, New York, pp 371–377

    Book  Google Scholar 

  • Naznin R (2005) Extraction of chitin and chitosan from shrimp (Metapenaeus monocerus) shell by chemical method. Pak J Biol Sci 8(7):1051–1054

    Article  CAS  Google Scholar 

  • Niederhofer A, Muller BW (2004) “A method for direct preparation of chitosan with low molecular weight from fungi”, European Journal of Pharmaceutics and Biopharmaceutics, 57, pp. 101–105

    Google Scholar 

  • Niekraszewicz A (2005) Chitosan medical dressings. Fibres Text East Eur 13(6 (54)):16–18

    CAS  Google Scholar 

  • Niekraszewicz A, Kucharska M, Struszczyk MH, Gruchała B, Brzoza K (2006) Composite surgical mesh and method of composite mesh manufacture, PL Patent Appl. No. 380861

    Google Scholar 

  • Niekraszewicz A, Kucharska M, Struszczyk MH, Rogaczewska A, Struszczyk K (2008) Investigation into biological, composite surgical meshes. Fibres Text East Eur 16(6 (71)):117–121

    CAS  Google Scholar 

  • Niekraszewicz A, Kucharska M, Wawro D, Struszczyk MH, Kopias K, Rogaczewska A (2007a) Development of a manufacturing method for surgical meshes modified by chitosan. Fibres Text East Eur 15(3 (62)):105–109

    CAS  Google Scholar 

  • Niekraszewicz A, Kucharska M, Wawro D, Struszczyk MH, Rogaczewska A (2007) Partially resorbable hernia meshes. In: Jaworska M (ed) Progress on chemistry and application of chitin and its derivatives, vol 12. Polish Chitin Society, pp 109–114

    Google Scholar 

  • Niekraszewicz A, Kucharska M, Wiśniewska-Wrona M, Ciechańska D, Ratajska M, Haberko K (2009) Surgical biocomposites with chitosan. In: Jaworska M (ed) Progress on chemistry and application of chitin and its derivatives, vol 14. Polish Chitin Society, pp 167–178

    Google Scholar 

  • Niekraszewicz A, Lebioda J, Kucharska M, Wesołowska E (2007) Research into developing antibacterial dressing materials. Fibres Text East Eur 15 1 (60): 99–103

    Google Scholar 

  • No HK, Meyers SP, Lee KS (1989) Isolation and characterization of chitin from crawfish shell waste. J Agric Food Chem 37(3):575–579

    Article  CAS  Google Scholar 

  • Oduor-Odote PM, Struszczyk MH, Peter MG (2005) Western Indian ocean. J Mar Sci 4(1):99–107

    Google Scholar 

  • Ohashi E, Karube I (1995) Fish Sci 61:856–859

    CAS  Google Scholar 

  • Orlikowski LB, Skrzypczak C (2003a) Chitosan induces some plant resistance to formae sp. Fusarium oxysporum. In: Progress on chemistry and application of chitin and its derivatives. Monograph IX, pp 101–106

    Google Scholar 

  • Orlikowski LB, Skrzypczak C, Niekraszewicz A, Struszczyk H (2001) Influence of chitosan on the development of Fusarium wilt of carnation. In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives, Monograph VII, pp 155–158

    Google Scholar 

  • Orlikowski LB, Skrzypczak CZ (2003b) Biocides in the control of soil-borne and leaf pathogens. Hortic Veget Grow 22(3):426–433

    Google Scholar 

  • Ouattara B, Simard RE, Piette G, Begin A, Holley RA (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol 62:139–148

    Article  CAS  Google Scholar 

  • Oungbho K, Muller BW (1997) Int J Pharm 156: 229–237

    Google Scholar 

  • Palma-Guerrero J, Jansson HB, Salinas J, Lopez-Llorca LV (2008) Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J Appl Microbiol 104:541–553

    PubMed  CAS  Google Scholar 

  • Papineau AM, Hoover DG, Knorr D, Farkas DF (1991) Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnol 5:45–57

    Article  CAS  Google Scholar 

  • Patkowska E, Pięta D (2004) Introductory studies on the use of biopreparations and organic compounds for seed dressing of runner bean (Phaseolus coccineus L.). Folia Univ Agric Stetin Agricultura 239(95):295–300

    Google Scholar 

  • Pellegrino JJ, Geer S, Maegley K, Rivera R, Steward T, Ko M (1990) Ann N Y Acad Sci Biochem Eng 589:229–244

    Article  CAS  Google Scholar 

  • Peniston QP, Johnson EL (1980) US patent 4 195 175

    Google Scholar 

  • Percot A, Viton C, Domard A (2003a) Characterization of shrimp shell deproteinization. Biomacromolecules 4(5):1380–1385

    Article  PubMed  CAS  Google Scholar 

  • Percot A, Viton C, Domard A (2003b) Optimization of chitin extraction from shrimp shells. Biomacromolecules 4(1):12–18

    Article  PubMed  CAS  Google Scholar 

  • Persin Z, Stana-Kleinschek K, Foster T, van Dam JEG, Boeriu CG, Navard P (2011) Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr Polym 84:22–32

    Article  CAS  Google Scholar 

  • Phuvasate S, Su YC (2010) Comparison of lactic acid bacteria fermentation with acid treatments for chitosan production from shrimp waste. J Aquat Food Prod Technol 19(3):170–179

    Article  CAS  Google Scholar 

  • Pięta D, Pastucha A, Struszczyk H, Wójcik W (2002) The effect of Chitosan and runner bean (Phaseolus coccineus L.) cultivation on the formation of microorganisms communities in the soil. In: Struszczyk H (ed) Progress of chemistry and application of chitin and its derivatives. Monograph VIII, Lodz, pp 133–140

    Google Scholar 

  • Pięta D, Patkowska E, Pastucha A (2006) Influence of Biochikol 020 PC used as seed dressing of bean on healthiness and yield of plants. In: Progress on chemistry and application of chitin and its derivatives, vol 11, pp 159–170

    Google Scholar 

  • Pinotti A, Bevilacqua A, Zaritzky N (1997) Optimization of the flocculation stage in a model system of a food emulsion waste using chitosan as polyelectrolyte. J Food Eng 32:69–81

    Article  Google Scholar 

  • Polish Patent 320491 (1997) A biological dressing and method to its manufacture

    Google Scholar 

  • Polish Patent No. 125995

    Google Scholar 

  • Polish Patent No. 141381

    Google Scholar 

  • Polish Patent No. 380861

    Google Scholar 

  • Pośpieszny H (1995) Inhibition of tobacco mosaic virus (TMV) infection by chitosan. Phytopath Polonica 10(XXII):69–74

    Google Scholar 

  • Pośpieszny H (1997) Antiviroid activity of chitosan. Crop Prot 16:105–106

    Article  Google Scholar 

  • Pośpieszny H, Chirkov S, Atabekov J (1991) Induction of antiviral resistance in plants by chitosan. Plant Sci 79:63–68

    Article  Google Scholar 

  • Pospieszny H, Giebel J (1997) In: Muzzarelli RAA (ed) Chitin enzymology, vol 2. Atec Edizioni, Italy, pp 379–383

    Google Scholar 

  • Pośpieszny H, Struszczyk H, Cajza M (1996) In: Muzzarelli RAA (ed) Chitin enzymology, vol 2. Atec, Grottammare, Italy, pp 385–389

    Google Scholar 

  • Dutta PK, Dutta J, Tripathi VS, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  • Prameela K, Mohan CM, Hemalatha KPJ (2010a) Extraction of pharmaceutically important chitin and carotenoids from shrimp biowaste by microbial fermentation method. J Pharm Res 3(10):2393–2395

    CAS  Google Scholar 

  • Prameela K, Mohan CM, Hemalatha KPJ (2010b) Optimization of fermentation of shrimp biowaste under different carbon sources for recovery of chitin and carotenoids by using Lactic acid bacteria. J Pharm Res 3(12):2888–2889

    CAS  Google Scholar 

  • Prodas-Drozd F, Gwiezdinski Z (1997) In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives, vol 3. Polish Chitin Society, Lodz, p 99

    Google Scholar 

  • Qin Y et al (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibres. Green Chem 12(6):968–971

    Article  CAS  Google Scholar 

  • Quong D, Groboillot A, Darling GD, Poncelet D, Neufeld RJ (1998) In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. Atec Edizioni, Italy, p 405

    Google Scholar 

  • Rabea EI, El Badawy MT, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Ratajska M, Haberko K, Ciechańska D, Niekraszewicz A, Kucharska M (2008) Hydroxyapatite – chitosan biocomposites. In: Jaworska M (ed) Progress on chemistry and application of chitin and its derivatives, vol 13. Polish Chitin Society, Lodz, pp 89–94

    Google Scholar 

  • Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Article  Google Scholar 

  • Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2006) Marguerite Rinaudo – chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Rawls RL (1984) Technology 14(5):42–45

    Google Scholar 

  • Reddy MV, Arul J, Angers P, Couture L (1999) Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J Agric Food Chem 47:1208–1216

    Article  CAS  Google Scholar 

  • Remunan C, Lopez C, Bodmeier R (1997) J Control Release 44:215–225

    Article  Google Scholar 

  • Revah-Moiseev S, Carroad A (1981) Conversion of the enzymatic hydrolysate of shellfish waste chitin to single-cell protein. Biotechnol Bioeng 23:1067–1078

    Article  CAS  Google Scholar 

  • Rhoades J, Roller S (2000) Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl Environ Microbiol 66:80–86

    Article  PubMed  CAS  Google Scholar 

  • Roberts GAF (1992a) Chitin chemistry. MacMillan Press Ltd., Houndmills, pp 1–5

    Google Scholar 

  • Roberts GAF (1992b) Chitin chemistry. MacMillan Press Ltd., Houndmills, pp 54–58

    Google Scholar 

  • Roberts GAF (1992c) Chitin chemistry. MacMillan Press Ltd., Houndmills, pp 64–74

    Google Scholar 

  • Roberts GAF (1992d) Chitin chemistry. MacMillan Press Ltd., Houndmills

    Google Scholar 

  • Roberts GAF (1998) In: Domard A, Roberts GAF, Varum KM (eds) Advances in chitin and chitosan, vol 2. Jacques Andre Publisher, Lyon, p 22

    Google Scholar 

  • Rødde RH et al (2008) Carbohydr Polym 71:388–393

    Article  CAS  Google Scholar 

  • Ruan SL, Xue QZ (2002) Effects of chitosan coating on seed germination and salt-tolerance of seedlings in hybrid rice (Oryza sativa L.). Acta Agron Sinica 28:803–808

    Google Scholar 

  • Rungsardthong V, Wongvuttanakul N, Kongpien N, Chotiwaranon P (2006) Process Biochem 41:589–593

    Article  CAS  Google Scholar 

  • Sannan T, Kurita K, Iwakura Y (1975) Macromol Chem 176:1191–1195

    Article  CAS  Google Scholar 

  • Savard T, Beaulieu C, Boucher I, Champagne CP (2002) Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. J Food Prot 65:828–833

    PubMed  CAS  Google Scholar 

  • Senstad C, Mattiasson B (1989) Purification of wheat germ agglutinin using affinity flocculation with chitosan and a subsequent centrifugation or floatation step. Biotechnol Bioeng 34:387–393

    Article  PubMed  CAS  Google Scholar 

  • Seo T, Kantabara T, Iijima T (1988) J Appl Polym Sci 36:1443–1451

    Article  CAS  Google Scholar 

  • Shahabeddin L, Damour O, Berthod F, Rousselle P, Saintigny G, Collombel C (1991) J Mater Sci Mater Med 2:222–226

    Article  CAS  Google Scholar 

  • Shahidi F, Abuzaytoun R, Steve LT (2005) Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nutr Res, 49, pp 93–135

    Google Scholar 

  • Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39:1527–1532

    Article  CAS  Google Scholar 

  • Shao CX, Hu J, Song WJ, Hu WM (2005) Effects of seed priming with chitosan solutions of different acidity on seed germination and physiological characteristics of maize seedling. J Zhejiang Univ Agric Life Sci 1:705–708

    Google Scholar 

  • Shepherd R, Reader S, Falshaw A (1997) Glycoconj J 14:535–542

    Article  PubMed  CAS  Google Scholar 

  • Shimahara K, Ohkouchi K, Ikeda M (1982) In: Hirano S, Tokura S (eds) Chitin and chitosan. The Japanese Society of Chitin and Chitosan, Tottori, p 10

    Google Scholar 

  • Shridhar Pandya (2007) “An Attractive Biocompatible Polymer for pharmaceutical application in various dosage forms – Chitosan”, Pharmaceutical Reviews, vol 5, Issue 3

    Google Scholar 

  • Shuangyun L, Gao W, Hai Ying G (2008) Construction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 34:623–628

    Article  Google Scholar 

  • Sini TK, Santhosh S, Mathew PT (2007) Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr Res 342(16):2423–2429

    Article  PubMed  CAS  Google Scholar 

  • Soto-Perlata NV, Muller H, Knorr D (1989) Effect of chitosan treatments on the clarity and color of apple juice. J Food Sci 54:495–496

    Article  Google Scholar 

  • Spagna G, Pifferi PG, Rangoni C, Mattivi F, Nicolini G, Palmonari R (1996) The stabilization of white wines by adsorption of phenolic compounds on chitin and chitosan. Food Res Intern 29:241–248

    Article  CAS  Google Scholar 

  • Stenberg E, Wachter R (1996) Adv Chitin Sci 1:166

    CAS  Google Scholar 

  • Stevens WF, Win NN, Ng CH, Pichyangukura S, Chandrkrachang S (1998) Adv Chitin Sci 2:40–47

    Google Scholar 

  • Stössel P, Leuba JL (1984) Effect of chitosan, chitin and some aminosugars on growth of various soilborne phytopathogenic fungi. Phytopathol Z 111:82–90

    Article  Google Scholar 

  • Struszczyk H (1987) J Appl Polym Sci 33:177–189

    Article  CAS  Google Scholar 

  • Struszczyk H (1994) In: Karnicki ZS, Bzeeski MM, Bykowski PJ, Wojtasz-Pajak A (eds) Chitin world. Verlag für Neue Wissenschsft, Bremerhaven, p 542

    Google Scholar 

  • Struszczyk H (1998a) In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. Atec Edizioni, Italy, pp 437–440

    Google Scholar 

  • Struszczyk H (1998b) In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. Atec Edizioni, Italy, p 441

    Google Scholar 

  • Struszczyk H, Ciechańska D, Wawro D, Stęplewski W, Krucińska I, Szosland L, Van de Velde K, Kiekens P (2004) Some properties of dibutyrylchitin fibres. In: Proceedings of 6th international conference of the European chitin society, EUCHIS’04, Poznan-Poland

    Google Scholar 

  • Struszczyk H, Kivekas O (1990) Br Polym J 23:261–265

    Article  CAS  Google Scholar 

  • Struszczyk H, Pospieszny H, Kivekas O (1997a) In: Muzzarelli RAA (ed) Chitin enzymology, vol 2. Atec Edizioni, Italy, pp 497–502

    Google Scholar 

  • Struszczyk MH (2002a) Polimery 47(5):316–325

    CAS  Google Scholar 

  • Struszczyk MH (2002b) Chitin and chitosan III: some aspects of biodegradation and bioactivity of polyaminosaccharides. Polimery 47(9):29–40

    Google Scholar 

  • Struszczyk MH (2006) Global requirements for medical applications of chitin and its derivatives, Monograph XI, Polish Chitin Society, pp 95–102

    Google Scholar 

  • Struszczyk MH (2002c) Chitin and chitosan II: applications of chitosan. Polimery 47(6):396–403

    CAS  Google Scholar 

  • Struszczyk MH, Brzoza-Malczewska K (2007) Fibres Text East Eur 5–6:163–166

    Google Scholar 

  • Struszczyk MH, Halweg R, Peter MG (1997b) Advances in chitin science. In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. Atec Edizioni, Grottammare, pp 40–49

    Google Scholar 

  • Struszczyk MH, Loth F, Peter MG (2000) In: Peter MG, Domard A, Muzzarelli RAA (eds) Advance in chitin chemistry, vol 4. University of Potsdam, Potsdam, Germany, pp 128–135

    Google Scholar 

  • Struszczyk MH, Loth F, Pospieszny H, Peter MG (2001a) In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives, vol 7. Polish Chitin Society, Lodz, pp 87–100

    Google Scholar 

  • Struszczyk MH, Peter MG (1997) Chemistry of Chitosan. In: 4th international workshop on carbohydrates as organic raw materials, Wien, 20.-21.3.(1997), Zuckerindustrie, 131.

    Google Scholar 

  • Struszczyk MH, Peter MG, DBU in Osnabrück, Materials, Osnabrück, 25/26.11. 1998.

    Google Scholar 

  • Struszczyk MH, Pospieszny H, Schanzenbach D, Peter MG (1999) In: Struszczyk H (ed) Polish-Russian chitin monograph. Lodz, Polish Chitin Society

    Google Scholar 

  • Struszczyk MH, Pospieszny H, Schanzenbach D, Peter MG (2001b) In: Uragami T, Kurita K, Fukamoto T (eds) Chitin and chitosan in life sciences. Kodansha, Tokyo, pp 426–427

    Google Scholar 

  • Struszczyk MH, Ratajska M, Brzoza-Malczewska K (2007) Fibres Text East Eur 2:105–109

    Google Scholar 

  • Struszczyk MH, Struszczyk KJ (2007) Medical applications of chitin and its derivatives. In: Jaworska M (ed) Progress on chemistry and application of chitin and its derivatives, vol 12. ISSN 1896-5644, pp 139–148

    Google Scholar 

  • Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272

    Article  CAS  Google Scholar 

  • Sudheesh Kumar PT, Abilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Preparation and characterization of novel α-chitin/nano silver composite scaffolds for wound dressing applications. Carbohydr Polym 80:761–767

    Article  CAS  Google Scholar 

  • Sun W, Payne GF (1996) Tyrosinase-containing chitosan gels: a combined catalyst and sorbent for selective phenol removal. Biotechnol Bioeng 51:79–86

    Article  PubMed  CAS  Google Scholar 

  • Synowiecki J, Al-Khateeb N (2000) The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp Crangon crangon processing discards. Food Chem 68(2):147–152

    Article  CAS  Google Scholar 

  • Synowiecki J, Al-Khateeb NA (2003) Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr 43(2):145–171

    Article  PubMed  CAS  Google Scholar 

  • Szosland L (1998) In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. Atec Edizioni, Italy, pp 53–60

    Google Scholar 

  • Szosland L, Struszczyk H (1997) In: Muzzarelli RAA (ed) Chitin enzymology, vol 2. Atec Edizioni, Italy, pp 491–496

    Google Scholar 

  • Taguchi T, Kishida A, Akashi M (1998) Chem Lett 8:711–722

    Article  Google Scholar 

  • Tajik H et al (2008) Preparation of chitosan from brine shrimp (Artemia urmiana) cyst shells and effects of different chemical processing sequences on the physicochemical and functional properties of the product. Molecules 13(6):1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Taked M, Aiba E (1962) Norisho Suisan Koshusho Hokoku 11:339

    Google Scholar 

  • Teixeira M, Paterson WP, Dunn EJ, Li Q, Hunter BK, Goosen MFA (1990) Ind Eng Chem Res 29:1205–1209

    Article  CAS  Google Scholar 

  • Teng WL, Khor E, Koon T, Lim LY, Ta S. Ch. (2001), Carbohydrate Research 332, pp 305–316

    Google Scholar 

  • Thanou M, Junginger HE (2005) Pharmaceutical applications of chitosan and derivatives. In: Dumitriu S (ed) Polysaccharides. Structural diversity and functional versatility, 2nd edn. Dekker, New York, pp 661–77

    Google Scholar 

  • Tokuyasu K, Mitsutomi M, Yamaguchi I, Hayashi K, Mori Y (2000) Biochemistry 39:8837–8843

    Article  PubMed  CAS  Google Scholar 

  • Tolaimate A et al (2003) Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 44(26):7939–7952

    Article  CAS  Google Scholar 

  • Tozaki H, Odoriba T, Okada N, Fujita T, Terabe A, Suzuki T, Okabe S, Muranishi S, Yamamoto A (2002) Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. J Control Release 82(1):51–61

    Article  PubMed  CAS  Google Scholar 

  • Tsai GJ, Su WH (1999) Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot 62:239–243

    PubMed  CAS  Google Scholar 

  • Tsigos I et al (2000) Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol 18(7):305–312

    Article  PubMed  CAS  Google Scholar 

  • Twu Y-K, Chang I-T, Ping C-C (2005) Carbohydr Polym 62:113–119

    Article  CAS  Google Scholar 

  • US patent No. 94–349661 (941205)

    Google Scholar 

  • US patent No. 2712507

    Google Scholar 

  • Uppal AK, El Hadrami A, Adam LR, Tenuta M, Daayf F (2008) Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts. Biol Control 44:90–100

    Article  Google Scholar 

  • Uragami T (1989) In: Skjak-Braek G, Anthonsen T, Standford P (eds) Chitin and chitosan. Elsevier Applied Science, New York, pp 783–792

    Google Scholar 

  • Urbanczyk G, Lipp-Symonowicz B, Jeziorny A, Dorau K, Wrzosek H, Urbaniak-Domagala W, Kowalska S (1997) Progress on chemistry and application of chitin and its derivatives, vol 3, pp 186–187

    Google Scholar 

  • Van Bennekum AM, Nguyen1 DV, Schulthess G, Hauser H, Phillips MC (2007) Mechanisms of cholesterol-lowering effects of dietary insoluble fibres:relationships with intestinal and hepatic cholesterol parameters. Arie, Shridhar Pandya: An attractive biocompatible polymer for pharmaceutical application in various dosage forms – Chitosan. Latest Rev 5(3)

    Google Scholar 

  • Vasyukova NI, Chalenko GI, Gerasimova NG, Perekhod EA, Ozeretskovskaya OL, Irina AV, Varlamov VP, Albulov AI (2005) Chitin and chitosan derivatives as elicitors of potato resistance to late blight. Appl Biochem Microbiol 36:372–376, translated from Prik. Biokhim. Mikrobiol. 2000, 36, 433–438

    Article  Google Scholar 

  • Veroni G, Veroni F, Contos S, Tripodi S, De Bernardi M, Guarino C, Marletta M (1996) In: Muzzarelli RAA (ed) Chitin enzymology, vol 2. Atec Edizioni, Italy, pp 63–68

    Google Scholar 

  • Vruggink H (1970) The effect of chitin amendment on actinomycetes in soil and on the infection of potato tubers by Streptomyces scabies. Neth J Plant Pathol 76:293–295

    Article  Google Scholar 

  • Wang B, Tian C, Wang L, Wang R, Fu H (2010) Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites. Nanotechnology 21:025606

    Article  PubMed  CAS  Google Scholar 

  • Wang GH (1992) Inhibition and inactivation of five species of foodborne pathogens by chitosan. J Food Prot 55:916–919

    Google Scholar 

  • Wang SL, Chio SH (1998) Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme Microb Technol 22(7):629–633

    Article  CAS  Google Scholar 

  • Wieczorek A, Mucha M (1997) In: Domard A, Roberts GAF, Varum KM (eds) Advance in chitin science, vol 2. Jacques Andre Publisher, Lyon, pp 890–896

    Google Scholar 

  • Wiśniewska-Wrona M, Kucharska M, Niekraszewicz A, Kardas I, Ciechańska D, Bodek K (2010) Chitosan-alginate biocomposites in the form of films used in bedsores treatment. Polim Med 40(2):57–64

    PubMed  Google Scholar 

  • Wojdyła AT (2001) Chitosan in the control of rose diseases – 6 year – trials. Bull Pol Ac Sci Biol Sci 49(3):243–252

    Google Scholar 

  • Wojdyła AT, Orlikowski LB, Niekraszewicz A, Struszczyk H (1996) Effectiveness of chitosan in the control of Sphaerotheca pannosa var. rosae and Peronospora sparsa on roses and Myrothecium roridum on dieffenbachia. Med Fac Landbouww Univ Gent 61/2a:461–464

    Google Scholar 

  • Wojdyła AT, Orlikowski LB, Struszczyk H (2001) Chitosan for the control of leaf pathogens. In: Muzzarelli RAA (ed) Chitin enzymology. Atec, Italy, pp 191–196

    Google Scholar 

  • Wojtasz-Pajak A (1997), “The influence of the parameters of the reaction of deacetylation on the physical and chemical properties of chitosan” in: Progress on Chemistry and Application of Chitin and its Derivatives, Monograph of Polish Chitin Society, vol 3, pp 4–10

    Google Scholar 

  • WojtaszPajak A (1998) In: Struszczyk H (ed) Progress on chemistry and application of chitin and its derivatives, vol 5. Polish Chitin Society, Lodz, pp 87–93

    Google Scholar 

  • Wojtasz-Pajak A, Brzeski MM (1998) In: Domard A, Roberts GAF, Varum KM (eds) Advances in chitin science, vol 2. Jacques Andre, Lyon, pp 64–70

    Google Scholar 

  • World Patent No., WO 9723390 A1 970703

    Google Scholar 

  • Wu ACM, Bough WA (1978) In: R.A.A. Muzzarelli, E.R. Pariser (eds) Proceedings of 1st international conference on chitin and chitosan. MIT Sea Grant Program, Cambridge, MA, pp 88–102.

    Google Scholar 

  • Xing R, Liu S, Yu H, Zhang Q, Li Z, Li P (2004) Carbohydr Res 339:2515

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Gallert C, Winter J (2008) Chitin purification from shrimp wastes by microbial deproteination and decalcification. Appl Microb Biotechnol 79(4):687–697

    Article  CAS  Google Scholar 

  • Yaghobi N, Hormozi F (2010) Carbohydr Polym 81:892–896

    Article  CAS  Google Scholar 

  • Yamaguchi I, Itoh S, Suzuki M, Osakae A, Tanaka J (2003a) Biomaterials 24:3285–3292

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi I, Itoh S, Suzuki M, Sakane M, Osaka A, Tanaka J (2003b) The chitosan prepared from crab tendon: the characterization and the mechanical properties. Biomaterials 24:2031–2036

    Article  PubMed  CAS  Google Scholar 

  • Yen M-T, Mau J-L (2007) LWT 40:558–563

    Article  CAS  Google Scholar 

  • Yihua YU, Binglin HE (1997) Artif Cells Blood Substit Immobil Biotechnol 25:445–450

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Okamoto A, Kataoka T (1993) Chem Eng Sci 48:2267–2272

    Article  CAS  Google Scholar 

  • Youn DK, No HK, Prinyawiwatkul W (2009) Physicochemical and functional properties of chitosans prepared from shells of crabs harvested in three different years. Carbohydr Polym 78(1):41–45

    Article  CAS  Google Scholar 

  • Yu G, Xu G, Zou H (1991) In: Feng H (ed) C-MRS international symposia proceedings, vol 3. North-Holland, Amsterdam, pp 305–315.

    Google Scholar 

  • Zhang C, Ping Q, Zhang H, Shen J (2003) Carbohydr Polym 54:137

    Article  CAS  Google Scholar 

  • Zhang M et al (2000) Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int J Biol Macromol 27(1):99–105

    Article  PubMed  CAS  Google Scholar 

  • Zhou YG, Yang YD, Qi YG, Zhang ZM, Wang XJ, Hu XJ (2002) Effects of chitosan on some physiological activity in germinating seed of peanut. J Peanut Sci 31:22–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuta Ciechańska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Kardas, I., Struszczyk, M.H., Kucharska, M., van den Broek, L.A.M., van Dam, J.E.G., Ciechańska, D. (2012). Chitin and Chitosan as Functional Biopolymers for Industrial Applications. In: Navard, P. (eds) The European Polysaccharide Network of Excellence (EPNOE). Springer, Vienna. https://doi.org/10.1007/978-3-7091-0421-7_11

Download citation

Publish with us

Policies and ethics