Skip to main content

Reservoir Type and Spatial Distribution

  • Chapter
  • First Online:
Marine Oil and Gas Exploration in China

Abstract

Paleozoic marine basins developed on stable continental masses in China (Ren et al. in Acta Geol Sichuan 30(1):31–34, 2006). Based on the statistics, there are more than 20 stable continental masses in China and are characterized by a small area. The largest continental mass is the North China Craton with an area of ~170 × 104 km2. The total area of the stable continental masses is ~455 × 104 km2. Compared with the huge cratons in North America and Russia, the area of the North China Craton is 1/12 of that of the North America Craton and 1/5 of that of the Russian Craton. Compared with North America and other huge cratons with stable basements and near-horizontal strata, small cratons such as North China, Yangtze, and Tarim are characterized by basement activation (poor stability), severe deformation of the deposition sequence, high tectonic activity, and multiple cycles and strong differences in time and space, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cai C, Wang J, Gu J (2005) Fluid–rock Interaction in Chinese sedimentary basins. J Grad Sch Chin Acad Sci 22(2):239–247

    Google Scholar 

  • Cheng K, Guan D, Chen J et al (1991) Laboratory thermal pressure modeling of the hydrocarbon generation potential of source rocks and it’s application in petroleum exploration. Pet Explor Dev 5:1–11

    Google Scholar 

  • Ding K, Li S, Yue C et al (2005) Review of thermochemical sulfate reduction. J China Univ Petrol (Ed Nat Sci) 29(1):150–155

    Google Scholar 

  • Dou L, Wang H, Qi L et al (2004) Reservoir forming mode classification and significance of palaeozoic marine oil and gas in China. J Jianghan Pet Inst 26(2):41–43

    Google Scholar 

  • Du J (2015) Geological theory and exploration practice of ancient carbonate gas field. Petroleum Industry Press

    Google Scholar 

  • Du J, Pan W (2016) Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China. Pet Explor Dev 43(3):327–339

    Google Scholar 

  • Du J, Xianzheng Z, Yiming Z (2012) Great discovery made in risk exploration of niudong1 well and its significance. China Petr Explor 17(01):1–7

    Google Scholar 

  • Du J, Zou C, Xu C et al (2014) Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin. Pet Explor Dev 3:268–277

    Google Scholar 

  • Ehrenberg SN, Nadeau PH (2005) Sandstone vs carbonate petroleum reservoirs: a global perspective on porosity-depth and porosity-permeability relationships. AAPG Bull 89(4):435–445

    Article  Google Scholar 

  • Ehrenberg SN, Eberli GP, Keramati M et al (2006) Porosity-permeability relationships in interlayered limestone-dolostone reservoirs. AAPG Bull 90(1):91–114

    Article  Google Scholar 

  • Fan M, Hu K, Jiang X et al (2009) Effect of acid fluid on carbonate reservoir reconstruction. Geochimica 38(1):20–26

    Google Scholar 

  • Guo T (2011) Basic characteristics of deep reef-bank reservoirs and major controlling factors of gas pools in the Yuanba gas field. Nat Gas Ind 31(10):12–16

    Google Scholar 

  • Guo X (2014) Rules of two-factor enrichment for marine shale gas in southern China—understanding from the Longmaxi formation shale gas in Sichuan Basin and its surrounding area. Acta Geol Sin 88(7):1209–1218

    Google Scholar 

  • Guo T (2016) Key geological issues and main controls on accumulation and enrichment of Chinese shale gas. Pet Explor Dev 43(3):317–326

    Article  Google Scholar 

  • Guo T (2019) Gas accumulation conditions and key exploration & development technologies in Yuanba gas field. Acta Petrolei Sinica 40(6):748–760

    Google Scholar 

  • Guo T, Zeng P (2015) The structural and preservation conditions for shale gas enrichment and high productivity in the Wufeng-Longmaxi formation, southeastern Sichuan Basin. Energy Explor Exploit 3(3):259–276

    Article  Google Scholar 

  • Guo T, Zhang H (2014) Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin. Pet Explor Dev 41(1):28–36

    Article  Google Scholar 

  • Guo X, Guo T, Huang R et al (2014) Cases of discovery and exploration of marine fields in China (Part 16): Yuanba gas field in Sichuan Basin. Mar Orig Pet Geol 19(4):57–64

    Google Scholar 

  • Guo X, Hu D, Li Y et al (2018) Discovery and theoretical and technical innovations of Yuanba gas field in Sichuan Basin, SW China. Pet Explor Dev 45(1):14–26

    Article  Google Scholar 

  • Hao F, Tonglou G, Zhu Y et al (2008) Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang gas field, Sichuan Basin, China. AAPG Bull 92:611–637

    Article  Google Scholar 

  • He D, Li D, Tong X (2010) Stereoscopic exploration model for multi-cycle superimposed basins in China. Acta Petrolei Sinica 31(5):695–709

    Google Scholar 

  • He D, Li D, Tong X et al (2008) Accumulation and distribution of oil and gas controlled by paleo-uplift in poly-history superimposed basin. Acta Petrolei Sinica 29(4):475–488

    Google Scholar 

  • Hill CA (1995) H2S-related porosity and sulfuric acid oil-field karst. AAPG Mem 37:301–305

    Google Scholar 

  • Li P, Zhang S, Wang Y et al (2004) Multiplex buried-hill genesis and pool-forming in rifted basin. Acta Petrolei Sinica 25(3):28–31

    Google Scholar 

  • Li S, Xu G, Song X (2016) Forming conditions of Pengzhou large gas field of Leikoupo Formation in Longmenshan piedmont tectonic belt, western Sichuan Basin, China Pet Explor 21(3):74–82

    Google Scholar 

  • Liu F, Wang Z, Sun C et al (2009) Development characteristics of reef flat in Lianglitage Formation in well block Zhonggu 2. Fault-Block Oil & Gas Field 16(5):13–16

    Google Scholar 

  • Ma Y (2006) Cases of discovery and exploration of marine fields in China: Part 6. Puguang gas field in Sichuan Basin (in Chinese with English abstract). Mar Orig Pet Geol 11(2):35–40

    Google Scholar 

  • Ma Y (2008) Geochemical characteristics and origin of natural gases from Puguang gas field on eastern Sichuan Basin. Nat Gas Geosci 19(1):1–7

    Google Scholar 

  • Ma Y, Guo T, Xiao C et al (2002) Petroleum geology of marine sequences and exploration potential in Southern China. Mar Orig Pet Geol 7(1):19–27

    Google Scholar 

  • Ma Y, Guo X, Guo T et al (2005a) Discovery of the large-scale Puguang gas field in the Sichuan Basin and its enlightenment for hydrocarbon prospecting (in Chinese with English abstract). Geol Rev 51(4):478–480

    Google Scholar 

  • Ma Y, Fu Q, Guo T et al (2005b) Pool forming pattern and process of the Upper Permian-Lower Triassic, the Puguang gas field, northeast Sichuan Basin, China (in Chinese with English abstract. Pet Geol Exp 27(5):455–461

    Google Scholar 

  • Ma Y, Cai Y, Li G (2005c) Basic characteristics and concentration of the Puguang gas field in the Sichuan Basin. Acta Geol Sin 79(6):858–865

    Google Scholar 

  • Ma Y, Mou C, Tan Q et al (2006) A discussion on Kaijiang-Liangping ocean trough. Oil Gas Geol 27(3):326–331

    Google Scholar 

  • Ma Y, Guo X, Guo T, Huang R, Cai X, Li G (2007a) The Puguang gas field: new giant discovery in the mature Sichuan Basin, southwest China. AAPG Bull 91(5):627–643

    Article  Google Scholar 

  • Ma Y, Guo T, Zhu G (2007b) Simulation experimental evidence for hydrogen sulfide on corrosion modification of carbonate reservoir—a case study of Feixianguan formation in eastern Sichuan Basin. Chin Sci Bull 52(Supp I):136–141

    Google Scholar 

  • Ma Y, Cai X, Guo T (2007c) Main controlling factors of oil and gas charging and rich accumulation in Puguang large gas field, Sichuan Basin. Chinese Sci Bull 52(Supp I):149–155

    Google Scholar 

  • Ma Y, Cai X, Zhao P (2011) The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir. Earth Sci Front 18(4):181–192

    Google Scholar 

  • Ma Y, Cai X, Zhao P (2014) Characteristics and formation mechanisms of reef–shoal carbonate reservoirs of Changxing-Feixianguan Formations, Yuanba Gas Field. Acta Petrol Sin 35(6):1001–1011

    Google Scholar 

  • Ma Y, Cai X, Zhao P (2018) China’s shale gas exploration and development: understanding and practice. Pet Explor Dev 45(4):561–574

    Article  Google Scholar 

  • Ma Y, Zhang S, Guo T et al (2008) Petroleum geology of the Puguang sour gas field in the Sichuan Basin SW China. Mar Pet Geol 25(2008a):357–370

    Article  Google Scholar 

  • Ma Y, Cai X, Zhao P et al (2010) Formation mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: a case study from the Puguang oilfield in Sichuan. Acta Geol Sin 84(8):1087–1094

    Google Scholar 

  • Machel HG (2001) Bacterial the thermochemical sulfate reduction in diagenetic settings-old and new insights. Sed Geol 140:143–175

    Article  Google Scholar 

  • Mazzullo SJ, Harris PM (1992) Mesogenetic dissolution: its role in porosity development in carbonate reservoirs. AAPG Bull 75(6):607–620

    Google Scholar 

  • Meng X, Zhang S, Li X et al (2010) Reservoir space in the Cambrian in the Ultradeep Well No. l, Tarim Basin. Acta Geol Sichuan 30(1):31–34

    Google Scholar 

  • Moore CH (1989) Carbonate diagenesis and porosity. Elsevier, New York

    Google Scholar 

  • Qin J, Liu B (2005) Models of hydrocarbon generation and expulsion from various marine source rocks. Pet Geol Expe 27(1):74–80

    Google Scholar 

  • Ran Q, Chen F, Zhang G (1997) Formation and tectonic evolution of cratonic paleouplifts and its relation to hydrocarbon migration and accumulation in China. Geosci—J Grad Sch China Univ Geosci 11(4):478–487

    Google Scholar 

  • Ren J, Deng P, Xiao L et al (2006) Petroliferous Provinces in China and the world: a comparison from tectonic point of view. Acta Geol Sin 80(10):1491–1500

    Google Scholar 

  • Schmidt V, McDonald DA (1979) The role of secondary porosity in the course of sandstone diagensis. SEPM Spec P (26):175–207

    Google Scholar 

  • Song Y, Zhao M, Hu G et al (2012) Progress and perspective of natural gas geochemistry researches in China. Bull Miner Pet Geochem 31(6):529–542

    Google Scholar 

  • Surdam RC, Boese SW, Crossey LJ (1984) The chemistry of secondary porosity: Part 2. Aspects of porosity modification. AAPG Spec Vol Mem 37:127–149

    Google Scholar 

  • Tan J, Xu G, Wu Y (1995) A study of deep buried secondary pores in carbonate rock of lower ordovician system in Eerduosi Basin. J Xi’an Pet Inst 10(4):9–14

    Google Scholar 

  • Wang Z, Sun C, Yang H et al (2010) Formation pattern of upper ordovician reef-bank complex along the Tazhong Slopebreak I, Tarim Block. NW China. Acta Geologica Sinica 84(4):546–552

    Google Scholar 

  • Wang Z, Yu H, Ji Y et al (2011a) Key technologies for discovery of giant marine carbonate oil/gas fields in Tazhong area, Tarim Basin. Xinjiang Pet Geol 32(3):218–223

    Google Scholar 

  • Wang Z, Zhang Y, Yang H et al (2011b) Reservior structures of the upper ordovician reef complexes in Tazhong 83–16 Well Area, Tarim Block. Geol J China Univ 17(4):577–585

    Google Scholar 

  • Wang Q, Song X, Xu G et al (2015a) Genetic mechanism of high quality dolomite reservoir of Leikoupo Formation in Western Sichuan. Summary of papers of 2015 annual meeting of Chinese Geological Society, vol II

    Google Scholar 

  • Wang Z, Zhang L, Sun C (2015b) Classification, period and exploration for carbonate karst in the Ordovician, Tarim Basin. J Palaeogeogr 17(5):635–644

    Google Scholar 

  • Wang Z, Wang T, Wen L et al (2016) Basic geological characteristics and accumulation conditions of Anyue giant gas field, Sichuan basin. China Offshore Oil and Gas 28(2):45–52

    Google Scholar 

  • Yang H, Bao H (2011) Characteristics of hydrocarbon accumulation in the middle Ordovician assemblages and their significance for gas exploration in the Ordos Basin. Nat Gas Ind 31(12):11–20

    Google Scholar 

  • Yang H, Zhu G, Wu F et al (2011) Conditions and mechanism of hydrocarbon accumulation in large reef-bank karst oil/gas fields of Tazhong area Tarim basin. Acta Petrologica Sinica 27(6):1865–1885

    Google Scholar 

  • Yang H, Liu X, Zhang D (2013) Main controlling factors of gas pooling in Ordovician marine carbonate reservoirs in the Ordos Basin and advances in gas exploration. Nat Gas Ind 33(5):1–12

    Google Scholar 

  • Yu K, Wang S (1995) Duyun movement in south guizhou province and its paleostructure, and their significance in petroleum geology. Guizhou Geol 12(3):225–232

    Google Scholar 

  • Zhang Y, Zhang B, Bian L et al (2005) Development constraints of marine source rocks in China. Earth Sci Front 12(3):39–48

    Google Scholar 

  • Zhang L, Li Y, Zhou C et al (2007) Lithofacies paleogeographical characteristics and reef-shoal distribution during the Ordovician in the Tarim Basin. Oil Gas Geol 28(6):731–737

    Google Scholar 

  • Zhao Z, Yu G, Zhu Y et al (2003a) Tectonic evolution and its control over hydrocarbon in southern China. J Chengdu Univ Technol: Sci Technol Ed 30(2):155–168

    Google Scholar 

  • Zhao Z, Zhu Y, Deng H et al (2003b) Control of paleouplifts to the meso-paleozoic primary oil and gas pools in the south of China. Pet Geol Exper 25(1):10–27, 27

    Google Scholar 

  • Zhao Z, Zhu Y, Yunjun X (2004) Formation rules and prediction of exploration targets of paleozoic-mesozoic oil-gas reservoirs in southern China. Acta Geol Sin 78(5):710–720

    Google Scholar 

  • Zhao W, Wang Z, Zhang S et al (2005) Successive generation of natural gas from organic materials and its significance in future exploration. Petroleum Explor Dev 32(2):1–7

    Google Scholar 

  • Zhao W, Wang Y, Wang H et al (2011) Further discussion on the connotation and significance of the natural gas relaying generation model from organic materials. Pet Explor Dev 38(2):129–135

    Article  Google Scholar 

  • Zhao X, Wang Q, Jin F et al (2012) Main controlling factors and exploration practice of subtle buried-hill hydrocarbon reservoir in Jizhong depression. Acta Petrolei Sinica 33(z1):71–79

    Google Scholar 

  • Zhou X, Wang Z, Yang H et al (2006) Cases of discovery and exploration of marine fields in China (Part 5): Tazhong ordovician condensate field in the Tarim Basin. Mar Orig Pet Geol 11(1):45–51

    Google Scholar 

  • Zhu B, Zhongdi C, Ying F (1996) Relation of organic acid generated by kerogen to secondary porosity of reservoir. Pet Geol Exp 18(2):206–215

    Google Scholar 

  • Zou C, Du J, Xu C et al (2014) Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin SW China. Pet Explor Dev 41(3):278–393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Geological Publishing House and Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, Y. (2020). Reservoir Type and Spatial Distribution. In: Marine Oil and Gas Exploration in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61147-0_6

Download citation

Publish with us

Policies and ethics